Pokitto-Raycasting/general.hpp
2018-09-30 14:40:27 +02:00

486 lines
12 KiB
C++

/**
General definitions common for Pokitto raycasting demos.
The demos use mode 13: 1 byte per pixel = 256 colors. Bitmaps (textures,
sprites, ...) are also in this format (use the provided python script to
convert png images).
author: Miloslav "drummyfish" Ciz
license: CC0 1.0
*/
#ifndef RAYCAST_DEMO_GENERAL_HPP
#define RAYCAST_DEMO_GENERAL_HPP
#include "stdio.h" // for debugging raycastlibg
#define RCL_VERTICAL_FOV RCL_UNITS_PER_SQUARE /* redefine camera vertical FOV:
RCL_UNITS_PER_SQUARE would normally mean
360 degrees, but it's not an actual
angle, just linear approximation, so
this is okay */
#define RCL_PIXEL_FUNCTION pixelFunc
/* ^ This has to be defined to the name of the function that will render
pixels. */
#include "raycastlib.h"
#include "Pokitto.h"
Pokitto::Core pokitto;
#ifndef FPS
#define FPS 30
#endif
#ifndef PLAYER_SPEED
#define PLAYER_SPEED (4 * RCL_UNITS_PER_SQUARE)
#endif
#ifndef PLAYER_ROTATION_SPEED
#define PLAYER_ROTATION_SPEED (RCL_UNITS_PER_SQUARE / 2)
#endif
#ifndef PLAYER_JUMP_SPEED
#define PLAYER_JUMP_SPEED 500
#endif
#ifndef HEAD_BOB_HEIGHT
#define HEAD_BOB_HEIGHT 100
#endif
#ifndef HEAD_BOB_STEP
#define HEAD_BOB_STEP 10
#endif
#ifndef GRAVITY_ACCELERATION
#define GRAVITY_ACCELERATION ((3 * RCL_UNITS_PER_SQUARE) / 2)
#endif
#define SCREEN_WIDTH 110
#define SCREEN_HEIGHT 88
#define MIDDLE_ROW (SCREEN_HEIGHT / 2)
#define MIDDLE_COLUMN (SCREEN_WIDTH / 2)
#ifndef SUBSAMPLE
#define SUBSAMPLE 2
#endif
#define SUBSAMPLED_WIDTH (SCREEN_WIDTH / SUBSAMPLE)
#define TRANSPARENT_COLOR 0x8f ///< Transparent color for sprites and GUI.
#define HUE(c) (c * 16 + 8) ///< Gives a middle color of given hue (0 to 15).
RCL_Unit zBuffer[SUBSAMPLED_WIDTH]; ///< 1D z-buffer for visibility determination.
RCL_RayConstraints defaultConstraints;
unsigned short palette[256];
#ifdef POK_SIM
inline void putSubsampledPixel(int32_t x, int32_t y, uint8_t color)
{
pokitto.display.drawPixel(x * SUBSAMPLE,y,color);
pokitto.display.drawPixel(x * SUBSAMPLE + 1,y,color);
}
#else
// This code breaks the simulator.
inline void putSubsampledPixel(int32_t x, int32_t y, uint8_t color)
{
uint8_t *buf = pokitto.display.screenbuffer;
buf += x * SUBSAMPLE;
buf += y * SCREEN_WIDTH;
for (uint8_t i = 0; i < SUBSAMPLE - 1; ++i)
*buf++ = color;
*buf = color;
}
#endif
uint8_t encodeHSV(uint8_t hue, uint8_t saturation, uint8_t value)
{
if (value > 15)
{
if (saturation > 84)
return ((saturation / 85 - 1) << 7) | ((hue / 32) << 4) | ((value - 16) / 15);
// "normal" color, as 0bSHHHVVVV, VVVV != 0
else
return value / 16;
// saturation near 0 => gray, as 0bVVVV0000, VVVV != 0
}
return 0;
// value near 0 => black, as 0b00000000
}
void decodeHSV(uint8_t hsv, uint8_t *hue, uint8_t *saturation, uint8_t *value)
{
uint8_t topHalf = hsv & 0b11110000;
uint8_t bottomHalf = hsv & 0b00001111;
if (topHalf != 0)
{
// "normal" color
*value = bottomHalf != 15 ? (bottomHalf + 1) * 16 : 255;
*saturation = (1 + ((hsv & 0b10000000) >> 7)) * 127;
*hue = ((hsv & 0b01110000) >> 4) * 32;
}
else
{
// gray/white/black
*hue = 0;
*saturation = 0;
*value = bottomHalf * 17;
}
}
void convertHSVtoRGB(uint8_t hue, uint8_t saturation, uint8_t value,
uint8_t *red, uint8_t *green, uint8_t *blue)
{
#define M 16
// ^ adds precision
int32_t chroma = (value * saturation) / 256;
int32_t h = (hue * M) / 42;
int32_t a = (h % (2 * M)) - M;
a = a < 0 ? -a : a; // abs
int32_t x = (chroma * (M - a)) / M;
if (h <= 1 * M)
{ *red = chroma; *green = x; *blue = 0; }
else if (h <= 2 * M)
{ *red = x; *green = chroma; *blue = 0; }
else if (h <= 3 * M)
{ *red = 0; *green = chroma; *blue = x; }
else if (h <= 4 * M)
{ *red = 0; *green = x; *blue = chroma; }
else if (h <= 5 * M)
{ *red = x; *green = 0; *blue = chroma; }
else if (h <= 6 * M)
{ *red = chroma; *green = 0; *blue = x; }
else
{ *red = 0; *green = 0; *blue = 0; }
#undef M
int32_t m = value - chroma;
*red += m;
*green += m;
*blue += m;
}
/**
Inits and loads a general 256 color palette.
*/
void initPalette()
{
/* the palette is HSV-based because it makes brightness addition fast, which
is important for fog/shadow diminishing */
for (uint16_t i = 0; i < 256; ++i)
{
uint8_t h,s,v,r,g,b;
decodeHSV(i,&h,&s,&v);
convertHSVtoRGB(h,s,v,&r,&g,&b);
palette[i] =
pokitto.display.RGBto565(r,g,b);
}
pokitto.display.load565Palette(palette);
}
/**
Adds given intensity to a color.
@param color input color
@param intensity intensity to add, 3 bit (0 to 7)
@return new color
*/
inline uint8_t addIntensity(uint8_t color, int16_t intensity)
{
int16_t newValue = (color & 0b00001111) + intensity; // value as in HSV
if (newValue <= 0)
return 0; // black
if (newValue >= 16)
newValue = 15;
return (color & 0b11110000) | newValue;
}
/**
Samples an image by normalized coordinates - each coordinate is in range
0 to RCL_UNITS_PER_SQUARE (from raycastlib).
*/
inline uint8_t sampleImage(const unsigned char *image, RCL_Unit x, RCL_Unit y)
{
x = RCL_wrap(x,RCL_UNITS_PER_SQUARE);
y = RCL_wrap(y,RCL_UNITS_PER_SQUARE);
int32_t index =
(x / (RCL_UNITS_PER_SQUARE / TEXTURE_W)) * TEXTURE_H +
(y / (RCL_UNITS_PER_SQUARE / TEXTURE_W));
return image[2 + index];
}
/**
Draws a scaled sprite on screen in an optimized way. The sprite has to be
square in resolution.
*/
void inline drawSpriteSquare(const unsigned char *sprite, int16_t x, int16_t y, RCL_Unit depth, int16_t size, int16_t intensity)
{
if (size < 0 || size > 200 || // let's not mess up with the incoming array
sprite[0] != sprite[1]) // only draw square sprites
return;
int16_t samplingIndices[size];
// optimization: precompute the indices
for (RCL_Unit i = 0; i < size; ++i)
samplingIndices[i] = (i * sprite[0]) / size;
x -= size / 2;
y -= size / 2;
uint8_t c;
int16_t jTo = size - max(0,y + size - 88);
int16_t iTo = size - max(0,x + size - 110);
for (RCL_Unit i = max(-1 * x,0); i < iTo; ++i)
{
int16_t xPos = x + i;
if (zBuffer[xPos / SUBSAMPLE] <= depth)
continue;
int16_t columnLocation = 2 + samplingIndices[i] * sprite[0];
for (RCL_Unit j = max(-1 * y,0); j < jTo; ++j)
{
c = sprite[columnLocation + samplingIndices[j]];
if (c != TRANSPARENT_COLOR)
pokitto.display.drawPixel(xPos,y + j,addIntensity(c,intensity));
}
}
}
/// Faster than drawSprite.
void drawImage(const unsigned char *image, int16_t x, int16_t y)
{
// TODO: optimize
for (int16_t i = 0; i < image[0]; ++i)
{
int16_t xPos = x + i;
int16_t column = 2 + i * image[1];
for (int16_t j = 0; j < image[1]; ++j)
{
char c = image[column + j];
if (c != TRANSPARENT_COLOR)
pokitto.display.drawPixel(xPos,y + j,image[column + j]);
}
}
}
class Player
{
public:
RCL_Camera mCamera;
RCL_Unit mVericalSpeed;
bool mRunning;
RCL_Unit mHeadBob;
bool mHeadBobUp;
Player()
{
RCL_initCamera(&mCamera);
mCamera.position.x = 0;
mCamera.position.y = 0;
mCamera.direction = 0;
mCamera.height = RCL_UNITS_PER_SQUARE * 3;
mCamera.resolution.x = SCREEN_WIDTH / SUBSAMPLE;
mCamera.resolution.y = SCREEN_HEIGHT;
mCamera.shear = 0;
mVericalSpeed = 0;
mRunning = false;
mHeadBob = 0;
mHeadBobUp = true;
}
void setPosition(RCL_Unit x, RCL_Unit y)
{
mCamera.position.x = x;
mCamera.position.y = y;
}
void setPosition(RCL_Unit x, RCL_Unit y, RCL_Unit z, RCL_Unit direction)
{
mCamera.position.x = x;
mCamera.position.y = y;
mCamera.height = z;
mCamera.direction = direction;
}
void setPositionSquare(int16_t squareX, int16_t squareY)
{
setPosition(
squareX * RCL_UNITS_PER_SQUARE + RCL_UNITS_PER_SQUARE / 2,
squareY * RCL_UNITS_PER_SQUARE + RCL_UNITS_PER_SQUARE / 2);
}
void update(int16_t moveDirection, bool strafe, int16_t turnDirection, bool jump,
int16_t shearDirection, RCL_ArrayFunction floorHeightFunction,
RCL_ArrayFunction ceilingHeightFunction, bool computeHeight, uint32_t dt)
{
RCL_Vector2D moveOffset;
moveOffset.x = 0;
moveOffset.y = 0;
if (moveDirection != 0)
{
int16_t horizontalStep = (dt * PLAYER_SPEED * (mRunning ? 2 : 1)) / 1000 *
(moveDirection > 0 ? 1 : -1);
moveOffset = RCL_angleToDirection(mCamera.direction + (strafe ? RCL_UNITS_PER_SQUARE / 4 : 0));
moveOffset.x = (moveOffset.x * horizontalStep) / RCL_UNITS_PER_SQUARE;
moveOffset.y = (moveOffset.y * horizontalStep) / RCL_UNITS_PER_SQUARE;
mHeadBob += mHeadBobUp ? HEAD_BOB_STEP : -HEAD_BOB_STEP;
if (mHeadBob > HEAD_BOB_HEIGHT)
mHeadBobUp = false;
else if (mHeadBob < -HEAD_BOB_HEIGHT)
mHeadBobUp = true;
}
else
mHeadBob /= 2;
if (turnDirection != 0)
{
int16_t rotationStep = (dt * PLAYER_ROTATION_SPEED) / 1000;
mCamera.direction = RCL_wrap(mCamera.direction + turnDirection * rotationStep,RCL_UNITS_PER_SQUARE);
}
RCL_Unit prevHeight = mCamera.height;
RCL_moveCameraWithCollision(&mCamera,moveOffset,mVericalSpeed,
floorHeightFunction, ceilingHeightFunction, computeHeight ? 1 : 0, 0);
RCL_Unit heightDiff = mCamera.height - prevHeight;
if (heightDiff == 0)
mVericalSpeed = 0; // hit floor/ceiling
if (jump && mVericalSpeed == 0)
{
int16_t camX = RCL_divRoundDown(mCamera.position.x,RCL_UNITS_PER_SQUARE);
int16_t camY = RCL_divRoundDown(mCamera.position.y,RCL_UNITS_PER_SQUARE);
if (mCamera.height - RCL_CAMERA_COLL_HEIGHT_BELOW -
floorHeightFunction(camX,camY) < 2)
mVericalSpeed = PLAYER_JUMP_SPEED; // jump
}
if (shearDirection != 0)
mCamera.shear = RCL_clamp(mCamera.shear + shearDirection * 10,
-1 * mCamera.resolution.y, mCamera.resolution.y);
else
mCamera.shear /= 2;
if (computeHeight)
mVericalSpeed -= (dt * GRAVITY_ACCELERATION) / 1000; // gravity
}
};
class Sprite
{
public:
const unsigned char *mImage;
RCL_Vector2D mPosition;
RCL_Unit mHeight;
RCL_Unit mPixelSize;
Sprite(const unsigned char *image, int16_t squareX, int16_t squareY, RCL_Unit z,
RCL_Unit pixelSize):
mImage(image),
mPixelSize(pixelSize)
{
mPosition.x = squareX * RCL_UNITS_PER_SQUARE + RCL_UNITS_PER_SQUARE / 2;
mPosition.y = squareY * RCL_UNITS_PER_SQUARE + RCL_UNITS_PER_SQUARE / 2;
mHeight = z * RCL_UNITS_PER_SQUARE + RCL_UNITS_PER_SQUARE / 2;
}
Sprite():
mImage(0), mHeight(0), mPixelSize(1)
{
mPosition.x = 0;
mPosition.y = 0;
}
};
void initGeneral()
{
pokitto.begin();
pokitto.setFrameRate(FPS);
pokitto.display.setFont(fontTiny);
pokitto.display.persistence = 1;
pokitto.display.setInvisibleColor(-1);
RCL_initRayConstraints(&defaultConstraints);
initPalette();
for (uint8_t i = 0; i < SUBSAMPLED_WIDTH; ++i)
zBuffer[i] = 0;
}
/**
Computes an average color of given texture.
*/
unsigned char computeAverageColor(const unsigned char *texture, int16_t excludeColor=-1)
{
uint8_t h,s,v;
uint32_t sumH = 0;
uint32_t sumS = 0;
uint32_t sumV = 0;
uint32_t pixels = texture[0] * texture[1];
uint32_t count = 0;
for (uint16_t i = 0; i < pixels; ++i)
{
uint8_t color = texture[2 + i];
if (color == excludeColor)
continue;
decodeHSV(texture[2 + i],&h,&s,&v);
sumH += h;
sumS += s;
sumV += v;
count++;
}
return encodeHSV(sumH / count,sumS / count, sumV / count);
}
#endif