mirror of
https://git.coom.tech/drummyfish/raycastlib.git
synced 2024-12-23 01:26:19 +01:00
Fix ugly fix
This commit is contained in:
parent
cd88d5a92d
commit
867ff32c6b
1 changed files with 154 additions and 29 deletions
183
raycastlib.h
183
raycastlib.h
|
@ -26,7 +26,7 @@
|
|||
|
||||
author: Miloslav "drummyfish" Ciz
|
||||
license: CC0 1.0
|
||||
version: 0.903
|
||||
version: 0.904
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
@ -116,6 +116,8 @@
|
|||
#define RCL_HORIZONTAL_FOV (RCL_UNITS_PER_SQUARE / 4)
|
||||
#endif
|
||||
|
||||
#define RCL_HORIZONTAL_FOV_TAN (RCL_VERTICAL_FOV * 4)
|
||||
|
||||
#define RCL_HORIZONTAL_FOV_HALF (RCL_HORIZONTAL_FOV / 2)
|
||||
|
||||
#ifndef RCL_CAMERA_COLL_RADIUS
|
||||
|
@ -242,7 +244,7 @@ typedef struct
|
|||
typedef struct
|
||||
{
|
||||
RCL_Vector2D position;
|
||||
RCL_Unit direction;
|
||||
RCL_Unit direction; // TODO: rename to "angle" to keep consistency
|
||||
RCL_Vector2D resolution;
|
||||
int16_t shear; /**< Shear offset in pixels (0 => no shear), can simulate
|
||||
looking up/down. */
|
||||
|
@ -305,10 +307,24 @@ typedef void
|
|||
|
||||
/**
|
||||
Simple-interface function to cast a single ray.
|
||||
|
||||
@return The first collision result.
|
||||
*/
|
||||
RCL_HitResult RCL_castRay(RCL_Ray ray, RCL_ArrayFunction arrayFunc);
|
||||
|
||||
/**
|
||||
Casts a 3D ray in 3D environment with floor and optional ceiling
|
||||
(ceilingHeightFunc can be 0). This can be useful for hitscan shooting,
|
||||
visibility checking etc.
|
||||
|
||||
@return normalized ditance (0 to RCL_UNITS_PER_SQUARE) along the ray at which
|
||||
the environment was hit, RCL_UNITS_PER_SQUARE means nothing was hit
|
||||
*/
|
||||
RCL_Unit RCL_castRay3D(
|
||||
RCL_Vector2D pos1, RCL_Unit height1, RCL_Vector2D pos2, RCL_Unit height2,
|
||||
RCL_ArrayFunction floorHeightFunc, RCL_ArrayFunction ceilingHeightFunc,
|
||||
RCL_RayConstraints constraints);
|
||||
|
||||
/**
|
||||
Maps a single point in the world to the screen (2D position + depth).
|
||||
*/
|
||||
|
@ -352,6 +368,10 @@ RCL_Unit RCL_cosInt(RCL_Unit input);
|
|||
|
||||
RCL_Unit RCL_sinInt(RCL_Unit input);
|
||||
|
||||
RCL_Unit RCL_tanInt(RCL_Unit input);
|
||||
|
||||
RCL_Unit RCL_ctgInt(RCL_Unit input);
|
||||
|
||||
/// Normalizes given vector to have RCL_UNITS_PER_SQUARE length.
|
||||
RCL_Vector2D RCL_normalize(RCL_Vector2D v);
|
||||
|
||||
|
@ -368,10 +388,16 @@ RCL_Unit RCL_len(RCL_Vector2D v);
|
|||
*/
|
||||
RCL_Unit RCL_degreesToUnitsAngle(int16_t degrees);
|
||||
|
||||
///< Computes the change in size of an object due to perspective.
|
||||
RCL_Unit RCL_perspectiveScale(RCL_Unit originalSize, RCL_Unit distance);
|
||||
///< Computes the change in size of an object due to perspective (vertical FOV).
|
||||
RCL_Unit RCL_perspectiveScaleVertical(RCL_Unit originalSize, RCL_Unit distance);
|
||||
|
||||
RCL_Unit RCL_perspectiveScaleInverse(RCL_Unit originalSize,
|
||||
RCL_Unit RCL_perspectiveScaleVerticalInverse(RCL_Unit originalSize,
|
||||
RCL_Unit scaledSize);
|
||||
|
||||
RCL_Unit
|
||||
RCL_perspectiveScaleHorizontal(RCL_Unit originalSize, RCL_Unit distance);
|
||||
|
||||
RCL_Unit RCL_perspectiveScaleHorizontalInverse(RCL_Unit originalSize,
|
||||
RCL_Unit scaledSize);
|
||||
|
||||
/**
|
||||
|
@ -502,7 +528,7 @@ RCL_Unit *_RCL_floorPixelDistances = 0;
|
|||
uint32_t profile_RCL_absVal = 0;
|
||||
uint32_t profile_RCL_normalize = 0;
|
||||
uint32_t profile_RCL_vectorsAngleCos = 0;
|
||||
uint32_t profile_RCL_perspectiveScale = 0;
|
||||
uint32_t profile_RCL_perspectiveScaleVertical = 0;
|
||||
uint32_t profile_RCL_wrap = 0;
|
||||
uint32_t profile_RCL_divRoundDown = 0;
|
||||
#define RCL_profileCall(c) profile_##c += 1
|
||||
|
@ -521,7 +547,7 @@ RCL_Unit *_RCL_floorPixelDistances = 0;
|
|||
printf(" RCL_normalize: %d\n",profile_RCL_normalize);\
|
||||
printf(" RCL_vectorsAngleCos: %d\n",profile_RCL_vectorsAngleCos);\
|
||||
printf(" RCL_absVal: %d\n",profile_RCL_absVal);\
|
||||
printf(" RCL_perspectiveScale: %d\n",profile_RCL_perspectiveScale);\
|
||||
printf(" RCL_perspectiveScaleVertical: %d\n",profile_RCL_perspectiveScaleVertical);\
|
||||
printf(" RCL_wrap: %d\n",profile_RCL_wrap);\
|
||||
printf(" RCL_divRoundDown: %d\n",profile_RCL_divRoundDown); }
|
||||
#else
|
||||
|
@ -637,6 +663,16 @@ RCL_Unit RCL_sinInt(RCL_Unit input)
|
|||
return RCL_cosInt(input - RCL_UNITS_PER_SQUARE / 4);
|
||||
}
|
||||
|
||||
RCL_Unit RCL_tanInt(RCL_Unit input)
|
||||
{
|
||||
return (RCL_sinInt(input) * RCL_UNITS_PER_SQUARE) / RCL_cosInt(input);
|
||||
}
|
||||
|
||||
RCL_Unit RCL_ctgInt(RCL_Unit input)
|
||||
{
|
||||
return (RCL_cosInt(input) * RCL_UNITS_PER_SQUARE) / RCL_sinInt(input);
|
||||
}
|
||||
|
||||
RCL_Vector2D RCL_angleToDirection(RCL_Unit angle)
|
||||
{
|
||||
RCL_profileCall(RCL_angleToDirection);
|
||||
|
@ -892,17 +928,6 @@ void RCL_castRayMultiHit(RCL_Ray ray, RCL_ArrayFunction arrayFunc,
|
|||
|
||||
#if !RCL_RECTILINEAR
|
||||
h.distance = RCL_dist(h.position,ray.start);
|
||||
#else
|
||||
h.distance = (h.distance * 23) / 32;
|
||||
|
||||
/* ^ UGLY HACK
|
||||
|
||||
For some reason the computed distance with rectilinear is larger, the
|
||||
correct distance is about 0.711 (~= 23/32) of the computed distance, so
|
||||
we correct it here in this ugly way.
|
||||
|
||||
TODO: investigate why, fix nicely
|
||||
*/
|
||||
#endif
|
||||
if (typeFunc != 0)
|
||||
h.type = typeFunc(currentSquare.x,currentSquare.y);
|
||||
|
@ -993,6 +1018,17 @@ void RCL_castRaysMultiHit(RCL_Camera cam, RCL_ArrayFunction arrayFunc,
|
|||
RCL_Vector2D dir2 =
|
||||
RCL_angleToDirection(cam.direction + RCL_HORIZONTAL_FOV_HALF);
|
||||
|
||||
/* We scale the side distances so that the middle one is
|
||||
RCL_UNITS_PER_SQUARE, which has to be this way. */
|
||||
|
||||
RCL_Unit cos = RCL_nonZero(RCL_cosInt(RCL_HORIZONTAL_FOV_HALF));
|
||||
|
||||
dir1.x = (dir1.x * RCL_UNITS_PER_SQUARE) / cos;
|
||||
dir1.y = (dir1.y * RCL_UNITS_PER_SQUARE) / cos;
|
||||
|
||||
dir2.x = (dir2.x * RCL_UNITS_PER_SQUARE) / cos;
|
||||
dir2.y = (dir2.y * RCL_UNITS_PER_SQUARE) / cos;
|
||||
|
||||
RCL_Unit dX = dir2.x - dir1.x;
|
||||
RCL_Unit dY = dir2.y - dir1.y;
|
||||
|
||||
|
@ -1288,10 +1324,10 @@ void _RCL_columnFunctionComplex(RCL_HitResult *hits, uint16_t hitCount, uint16_t
|
|||
|
||||
fWallHeight = _RCL_floorFunction(hit.square.x,hit.square.y);
|
||||
fZ2World = fWallHeight - _RCL_camera.height;
|
||||
fZ1Screen = _RCL_middleRow - RCL_perspectiveScale(
|
||||
fZ1Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
|
||||
(fZ1World * _RCL_camera.resolution.y) /
|
||||
RCL_UNITS_PER_SQUARE,distance);
|
||||
fZ2Screen = _RCL_middleRow - RCL_perspectiveScale(
|
||||
fZ2Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
|
||||
(fZ2World * _RCL_camera.resolution.y) /
|
||||
RCL_UNITS_PER_SQUARE,distance);
|
||||
|
||||
|
@ -1299,10 +1335,10 @@ void _RCL_columnFunctionComplex(RCL_HitResult *hits, uint16_t hitCount, uint16_t
|
|||
{
|
||||
cWallHeight = _RCL_ceilFunction(hit.square.x,hit.square.y);
|
||||
cZ2World = cWallHeight - _RCL_camera.height;
|
||||
cZ1Screen = _RCL_middleRow - RCL_perspectiveScale(
|
||||
cZ1Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
|
||||
(cZ1World * _RCL_camera.resolution.y) /
|
||||
RCL_UNITS_PER_SQUARE,distance);
|
||||
cZ2Screen = _RCL_middleRow - RCL_perspectiveScale(
|
||||
cZ2Screen = _RCL_middleRow - RCL_perspectiveScaleVertical(
|
||||
(cZ2World * _RCL_camera.resolution.y) /
|
||||
RCL_UNITS_PER_SQUARE,distance);
|
||||
}
|
||||
|
@ -1490,13 +1526,13 @@ void _RCL_columnFunctionSimple(RCL_HitResult *hits, uint16_t hitCount,
|
|||
|
||||
int16_t wallHeightWorld = _RCL_floorFunction(hit.square.x,hit.square.y);
|
||||
|
||||
wallHeightScreen = RCL_perspectiveScale((wallHeightWorld *
|
||||
wallHeightScreen = RCL_perspectiveScaleVertical((wallHeightWorld *
|
||||
_RCL_camera.resolution.y) / RCL_UNITS_PER_SQUARE,dist);
|
||||
|
||||
int16_t RCL_normalizedWallHeight = wallHeightWorld != 0 ?
|
||||
((RCL_UNITS_PER_SQUARE * wallHeightScreen) / wallHeightWorld) : 0;
|
||||
|
||||
heightOffset = RCL_perspectiveScale(_RCL_cameraHeightScreen,dist);
|
||||
heightOffset = RCL_perspectiveScaleVertical(_RCL_cameraHeightScreen,dist);
|
||||
|
||||
wallStart = _RCL_middleRow - wallHeightScreen + heightOffset +
|
||||
RCL_normalizedWallHeight;
|
||||
|
@ -1562,7 +1598,7 @@ static inline void _RCL_precomputeFloorDistances(RCL_Camera camera,
|
|||
(camera.height * camera.resolution.y) / RCL_UNITS_PER_SQUARE;
|
||||
|
||||
for (uint16_t i = startIndex; i < camera.resolution.y; ++i)
|
||||
dest[i] = RCL_perspectiveScaleInverse(camHeightScreenSize,
|
||||
dest[i] = RCL_perspectiveScaleVerticalInverse(camHeightScreenSize,
|
||||
RCL_absVal(i - _RCL_middleRow));
|
||||
}
|
||||
|
||||
|
@ -1693,7 +1729,7 @@ RCL_PixelInfo RCL_mapToScreen(RCL_Vector2D worldPosition, RCL_Unit height,
|
|||
|
||||
result.position.y =
|
||||
camera.resolution.y / 2 -
|
||||
(RCL_perspectiveScale(height - camera.height,result.depth)
|
||||
(RCL_perspectiveScaleVertical(height - camera.height,result.depth)
|
||||
* camera.resolution.y) / RCL_UNITS_PER_SQUARE
|
||||
+ camera.shear;
|
||||
|
||||
|
@ -1705,9 +1741,9 @@ RCL_Unit RCL_degreesToUnitsAngle(int16_t degrees)
|
|||
return (degrees * RCL_UNITS_PER_SQUARE) / 360;
|
||||
}
|
||||
|
||||
RCL_Unit RCL_perspectiveScale(RCL_Unit originalSize, RCL_Unit distance)
|
||||
RCL_Unit RCL_perspectiveScaleVertical(RCL_Unit originalSize, RCL_Unit distance)
|
||||
{
|
||||
RCL_profileCall(RCL_perspectiveScale);
|
||||
RCL_profileCall(RCL_perspectiveScaleVertical);
|
||||
|
||||
return distance != 0 ?
|
||||
(originalSize * RCL_UNITS_PER_SQUARE) /
|
||||
|
@ -1715,7 +1751,7 @@ RCL_Unit RCL_perspectiveScale(RCL_Unit originalSize, RCL_Unit distance)
|
|||
: 0;
|
||||
}
|
||||
|
||||
RCL_Unit RCL_perspectiveScaleInverse(RCL_Unit originalSize,
|
||||
RCL_Unit RCL_perspectiveScaleVerticalInverse(RCL_Unit originalSize,
|
||||
RCL_Unit scaledSize)
|
||||
{
|
||||
return scaledSize != 0 ?
|
||||
|
@ -1725,6 +1761,95 @@ RCL_Unit RCL_perspectiveScaleInverse(RCL_Unit originalSize,
|
|||
: RCL_INFINITY;
|
||||
}
|
||||
|
||||
RCL_Unit
|
||||
RCL_perspectiveScaleHorizontal(RCL_Unit originalSize, RCL_Unit distance)
|
||||
{
|
||||
return distance != 0 ?
|
||||
(originalSize * RCL_UNITS_PER_SQUARE) /
|
||||
((RCL_HORIZONTAL_FOV_TAN * 2 * distance) / RCL_UNITS_PER_SQUARE)
|
||||
: 0;
|
||||
}
|
||||
|
||||
RCL_Unit RCL_perspectiveScaleHorizontalInverse(RCL_Unit originalSize,
|
||||
RCL_Unit scaledSize)
|
||||
{
|
||||
return scaledSize != 0 ?
|
||||
(originalSize * RCL_UNITS_PER_SQUARE + RCL_UNITS_PER_SQUARE / 2) /
|
||||
((RCL_HORIZONTAL_FOV_TAN * 2 * scaledSize) / RCL_UNITS_PER_SQUARE)
|
||||
: RCL_INFINITY;
|
||||
}
|
||||
|
||||
RCL_Unit RCL_castRay3D(
|
||||
RCL_Vector2D pos1, RCL_Unit height1, RCL_Vector2D pos2, RCL_Unit height2,
|
||||
RCL_ArrayFunction floorHeightFunc, RCL_ArrayFunction ceilingHeightFunc,
|
||||
RCL_RayConstraints constraints)
|
||||
{
|
||||
RCL_HitResult hits[constraints.maxHits];
|
||||
uint16_t numHits;
|
||||
|
||||
RCL_Ray ray;
|
||||
|
||||
ray.start = pos1;
|
||||
|
||||
RCL_Unit distance;
|
||||
|
||||
ray.direction.x = pos2.x - pos1.x;
|
||||
ray.direction.y = pos2.y - pos1.y;
|
||||
|
||||
distance = RCL_len(ray.direction);
|
||||
|
||||
ray.direction = RCL_normalize(ray.direction);
|
||||
|
||||
RCL_Unit heightDiff = height2 - height1;
|
||||
|
||||
RCL_castRayMultiHit(ray,floorHeightFunc,0,hits,&numHits,constraints);
|
||||
|
||||
RCL_Unit result = RCL_UNITS_PER_SQUARE;
|
||||
|
||||
int16_t squareX = RCL_divRoundDown(pos1.x,RCL_UNITS_PER_SQUARE);
|
||||
int16_t squareY = RCL_divRoundDown(pos1.y,RCL_UNITS_PER_SQUARE);
|
||||
|
||||
RCL_Unit startHeight = floorHeightFunc(squareX,squareY);
|
||||
|
||||
#define checkHits(comp,res) \
|
||||
{ \
|
||||
RCL_Unit currentHeight = startHeight; \
|
||||
for (uint16_t i = 0; i < numHits; ++i) \
|
||||
{ \
|
||||
if (hits[i].distance > distance) \
|
||||
break;\
|
||||
RCL_Unit h = hits[i].arrayValue; \
|
||||
if ((currentHeight comp h ? currentHeight : h) \
|
||||
comp (height1 + (hits[i].distance * heightDiff) / distance)) \
|
||||
{ \
|
||||
res = (hits[i].distance * RCL_UNITS_PER_SQUARE) / distance; \
|
||||
break; \
|
||||
} \
|
||||
currentHeight = h; \
|
||||
} \
|
||||
}
|
||||
|
||||
checkHits(>,result)
|
||||
|
||||
if (ceilingHeightFunc != 0)
|
||||
{
|
||||
RCL_Unit result2 = RCL_UNITS_PER_SQUARE;
|
||||
|
||||
startHeight = ceilingHeightFunc(squareX,squareY);
|
||||
|
||||
RCL_castRayMultiHit(ray,ceilingHeightFunc,0,hits,&numHits,constraints);
|
||||
|
||||
checkHits(<,result2)
|
||||
|
||||
if (result2 < result)
|
||||
result = result2;
|
||||
}
|
||||
|
||||
#undef checkHits
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void RCL_moveCameraWithCollision(RCL_Camera *camera, RCL_Vector2D planeOffset,
|
||||
RCL_Unit heightOffset, RCL_ArrayFunction floorHeightFunc,
|
||||
RCL_ArrayFunction ceilingHeightFunc, int8_t computeHeight, int8_t force)
|
||||
|
|
Loading…
Reference in a new issue