#ifndef RAYCASTLIB_H #define RAYCASTLIB_H #include /** author: Miloslav "drummyfish" Ciz license: CC0 - Game field's bottom left corner is at [0,0]. - X axis goes right. - Y axis goes up. - Each game square is UNITS_PER_SQUARE * UNITS_PER_SQUARE. - Angles are in Units, 0 means pointing right (x+) and positively rotates clockwise, a full angle has UNITS_PER_SQUARE Units. */ #define UNITS_PER_SQUARE 1024 typedef int32_t Unit; /**< Smallest spatial unit, there is UNITS_PER_SQUARE units in a square's length. */ #define logVector2D(v)\ printf("[%d,%d]\n",v.x,v.y); #define logRay(r){\ printf("ray:\n");\ printf(" start: ");\ logVector2D(r.start);\ printf(" dir: ");\ logVector2D(r.direction);}\ #define logHitResult(h){\ printf("hit:\n");\ printf(" sqaure: ");\ logVector2D(h.square);\ printf(" pos: ");\ logVector2D(h.position);\ printf(" dist: %d\n", h.distance);\ printf(" texcoord: %d\n", h.textureCoord);}\ /// Position in 2D space. typedef struct { int32_t y; int32_t x; } Vector2D; typedef struct { Vector2D start; Vector2D direction; } Ray; typedef struct { Vector2D square; ///< Collided square coordinates. Vector2D position; ///< Exact collision position in Units. Unit distance; /**< Euclidean distance to the hit position, or -1 if no collision happened. */ Unit textureCoord; /**< Normalized (0 to UNITS_PER_SQUARE - 1) texture coordinate. */ uint8_t direction; ///< Direction of hit. } HitResult; /** Casts a single ray and returns the first collision result. @param Ray Ray to be cast. @param arrayFunc Function that for x and y array coordinates (in squares, NOT Units) returns a type of square (just a number) - transition between two squares of different types (values) is considered a collision). @param maxSteps Maximum number of steps (in squares) to trace the ray. @return The first collision result. */ /** Like castRaysMultiHit but only returns the first hit. */ HitResult castRay(Ray ray, int16_t (*arrayFunc)(int16_t, int16_t), uint16_t maxSteps); /** Casts a single ray and returns a list of collisions. */ void castRayMultiHit(Ray ray, int16_t (*arrayFunc)(int16_t x, int16_t y), uint16_t maxSteps, HitResult *hitResults, uint16_t *hitResultsLen, uint16_t maxHits); Vector2D angleToDirection(Unit angle); Unit cosInt(Unit input); Unit sinInt(Unit input); uint16_t sqrtInt(uint32_t value); Unit dist(Vector2D p1, Vector2D p2); Unit len(Vector2D v); /** Converts an angle in whole degrees to an angle in Units that this library uses. */ Unit degreesToUnitsAngle(int16_t degrees); ///< Computes the change in size of an object due to perspective. Unit perspectiveScale(Unit originalSize, Unit distance, Unit fov); /** Casts rays for given camera view and for each hit calls a user provided function. */ void castRaysMultiHit( Vector2D position, Unit directionAngle, Unit fovAngle, uint16_t resolution, int16_t (*arrayFunc)(int16_t x, int16_t y), void (*hitFunc)(uint16_t pos, HitResult hit, uint16_t hitNo, Ray r), uint16_t maxHits, uint16_t maxSteps); //============================================================================= // privates Unit clamp(Unit value, Unit valueMin, Unit valueMax) { if (value < valueMin) return valueMin; if (value > valueMax) return valueMax; return value; } // Bhaskara's cosine approximation formula #define trigHelper(x) (UNITS_PER_SQUARE *\ (UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 - 4 * (x) * (x)) /\ (UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 + (x) * (x))) Unit cosInt(Unit input) { input = input % UNITS_PER_SQUARE; if (input < 0) input = UNITS_PER_SQUARE + input; if (input < UNITS_PER_SQUARE / 4) return trigHelper(input); else if (input < UNITS_PER_SQUARE / 2) return -1 * trigHelper(UNITS_PER_SQUARE / 2 - input); else if (input < 3 * UNITS_PER_SQUARE / 4) return -1 * trigHelper(input - UNITS_PER_SQUARE / 2); else return trigHelper(UNITS_PER_SQUARE - input); } #undef trigHelper Unit sinInt(Unit input) { return cosInt(input - UNITS_PER_SQUARE / 4); } Vector2D angleToDirection(Unit angle) { Vector2D result; result.x = cosInt(angle); result.y = -1 * sinInt(angle); return result; } uint16_t sqrtInt(uint32_t value) { uint32_t result = 0; uint32_t a = value; uint32_t b = 1u << 30; while (b > a) b >>= 2; while (b != 0) { if (a >= result + b) { a -= result + b; result = result + 2 * b; } b >>= 2; result >>= 1; } return result; } Unit dist(Vector2D p1, Vector2D p2) { int32_t dx = p2.x - p1.x; int32_t dy = p2.y - p1.y; dx = dx * dx; dy = dy * dy; return sqrtInt(((uint32_t) dx) + ((uint32_t) dy)); } Unit len(Vector2D v) { v.x *= v.x; v.y *= v.y; return sqrtInt(((uint32_t) v.x) + ((uint32_t) v.y)); } int8_t pointIsLeftOfRay(Vector2D point, Ray ray) { int dX = point.x - ray.start.x; int dY = point.y - ray.start.y; return (ray.direction.x * dY - ray.direction.y * dX) > 0; // ^ Z component of cross-product } /** Casts a ray within a single square, to collide with the square borders. */ void castRaySquare(Ray localRay, Vector2D *nextCellOffset, Vector2D *collisionPointOffset) { nextCellOffset->x = 0; nextCellOffset->y = 0; Ray criticalLine = localRay; #define helper(c1,c2,n)\ {\ nextCellOffset->c1 = n;\ collisionPointOffset->c1 = criticalLine.start.c1 - localRay.start.c1;\ collisionPointOffset->c2 = \ (((int32_t) collisionPointOffset->c1) * localRay.direction.c2) /\ ((localRay.direction.c1 == 0) ? 1 : localRay.direction.c1);\ } #define helper2(n1,n2,c)\ if (pointIsLeftOfRay(localRay.start,criticalLine) == c)\ helper(y,x,n1)\ else\ helper(x,y,n2) if (localRay.direction.x > 0) { criticalLine.start.x = UNITS_PER_SQUARE; if (localRay.direction.y > 0) { // top right criticalLine.start.y = UNITS_PER_SQUARE; helper2(1,1,1) } else { // bottom right criticalLine.start.y = -1; helper2(-1,1,0) } } else { criticalLine.start.x = -1; if (localRay.direction.y > 0) { // top left criticalLine.start.y = UNITS_PER_SQUARE; helper2(1,-1,0) } else { // bottom left criticalLine.start.y = -1; helper2(-1,-1,1) } } #undef helper2 #undef helper } void castRayMultiHit(Ray ray, int16_t (*arrayFunc)(int16_t, int16_t), uint16_t maxSteps, HitResult *hitResults, uint16_t *hitResultsLen, uint16_t maxHits) { Vector2D initialPos = ray.start; Vector2D currentPos = ray.start; Vector2D currentSquare; currentSquare.x = ray.start.x / UNITS_PER_SQUARE; currentSquare.y = ray.start.y / UNITS_PER_SQUARE; *hitResultsLen = 0; int16_t squareType = arrayFunc(currentSquare.x,currentSquare.y); Vector2D no, co; // next cell offset, collision offset for (uint16_t i = 0; i < maxSteps; ++i) { int16_t currentType = arrayFunc(currentSquare.x,currentSquare.y); if (currentType != squareType) { // collision HitResult h; h.position = currentPos; h.square = currentSquare; h.distance = dist(initialPos,currentPos); if (no.y > 0) h.direction = 0; else if (no.x > 0) h.direction = 1; else if (no.y < 0) h.direction = 2; else h.direction = 3; hitResults[*hitResultsLen] = h; *hitResultsLen += 1; squareType = currentType; if (*hitResultsLen >= maxHits) break; } ray.start.x = currentPos.x % UNITS_PER_SQUARE; ray.start.y = currentPos.y % UNITS_PER_SQUARE; castRaySquare(ray,&no,&co); currentSquare.x += no.x; currentSquare.y += no.y; currentPos.x += co.x; currentPos.y += co.y; } } HitResult castRay(Ray ray, int16_t (*arrayFunc)(int16_t, int16_t), uint16_t maxSteps) { HitResult result; uint16_t len; castRayMultiHit(ray,arrayFunc,maxSteps,&result,&len,1); if (len == 0) result.distance = -1; return result; } void castRaysMultiHit( Vector2D position, Unit directionAngle, Unit fovAngle, uint16_t resolution, int16_t (*arrayFunc)(int16_t x, int16_t y), void (*hitFunc)(uint16_t pos, HitResult hit, uint16_t hitNo, Ray r), uint16_t maxHits, uint16_t maxSteps) { uint16_t fovHalf = fovAngle / 2; Vector2D dir1 = angleToDirection(directionAngle - fovHalf); Vector2D dir2 = angleToDirection(directionAngle + fovHalf); Unit dX = dir2.x - dir1.x; Unit dY = dir2.y - dir1.y; HitResult hits[maxHits]; uint16_t hitCount; Ray r; r.start = position; for (uint8_t i = 0; i < resolution; ++i) { r.direction.x = dir1.x + (dX * i) / resolution; r.direction.y = dir1.y + (dY * i) / resolution; castRayMultiHit(r,arrayFunc,maxSteps,hits,&hitCount,maxHits); for (uint8_t j = 0; j < hitCount; ++j) hitFunc(i,hits[j],j,r); } } Unit degreesToUnitsAngle(int16_t degrees) { return (degrees * UNITS_PER_SQUARE) / 360; } Unit perspectiveScale(Unit originalSize, Unit distance, Unit fov) { distance *= fov; distance = distance == 0 ? 1 : distance; // prevent division by zero return originalSize / distance; } #endif