#ifndef RAYCASTLIB_H #define RAYCASTLIB_H /** raycastlib - Small C header-only raycasting library for embedded and low performance computers, such as Arduino. Only uses integer math and stdint standard library. author: Miloslav "drummyfish" Ciz license: CC0 - Game field's bottom left corner is at [0,0]. - X axis goes right. - Y axis goes up. - Each game square is UNITS_PER_SQUARE * UNITS_PER_SQUARE. - Angles are in Units, 0 means pointing right (x+) and positively rotates clockwise, a full angle has UNITS_PER_SQUARE Units. */ #include #ifndef RAYCAST_TINY #define UNITS_PER_SQUARE 1024 ///< No. of Units in a side of a spatial square. typedef int32_t Unit; /**< Smallest spatial unit, there is UNITS_PER_SQUARE units in a square's length. This effectively serves the purpose of a fixed-point arithmetic. */ typedef int32_t int_maybe32_t; typedef uint32_t uint_maybe32_t; #else #define UNITS_PER_SQUARE 64 typedef int16_t Unit; typedef int16_t int_maybe32_t; typedef uint16_t uint_maybe32_t; #endif #define VERTICAL_FOV (UNITS_PER_SQUARE / 2) #define logVector2D(v)\ printf("[%d,%d]\n",v.x,v.y); #define logRay(r){\ printf("ray:\n");\ printf(" start: ");\ logVector2D(r.start);\ printf(" dir: ");\ logVector2D(r.direction);}\ #define logHitResult(h){\ printf("hit:\n");\ printf(" sqaure: ");\ logVector2D(h.square);\ printf(" pos: ");\ logVector2D(h.position);\ printf(" dist: %d\n", h.distance);\ printf(" texcoord: %d\n", h.textureCoord);}\ /// Position in 2D space. typedef struct { int_maybe32_t y; int_maybe32_t x; } Vector2D; typedef struct { Vector2D start; Vector2D direction; } Ray; typedef struct { Vector2D square; ///< Collided square coordinates. Vector2D position; ///< Exact collision position in Units. Unit distance; /**< Euclidean distance to the hit position, or -1 if no collision happened. */ Unit textureCoord; /// Normalized (0 to UNITS_PER_SQUARE - 1) tex coord. uint8_t direction; ///< Direction of hit. } HitResult; // TODO: things like FOV could be constants to make them precomp. and faster? typedef struct { Vector2D position; Unit direction; Vector2D resolution; Unit fovAngle; Unit height; } Camera; typedef struct { Vector2D position; ///< On-screen position. int8_t isWall; ///< Whether the pixel is a wall or a floor(/ceiling). Unit depth; ///< Corrected depth. HitResult hit; ///< Corresponding ray hit. Unit textureCoordY; ///< Normalized (0 to UNITS_PER_SQUARE - 1) tex coord. } PixelInfo; typedef struct { uint16_t maxHits; uint16_t maxSteps; } RayConstraints; /** Function used to retrieve the cells of the rendered scene. It should return a "type" of given square as an integer (e.g. square height) - between squares that return different numbers there is considered to be a collision. */ typedef Unit (*ArrayFunction)(int16_t x, int16_t y); typedef void (*PixelFunction)(PixelInfo info); typedef void (*ColumnFunction)(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray); /** Simple-interface function to cast a single ray. @return The first collision result. */ HitResult castRay(Ray ray, ArrayFunction arrayFunc); /** Casts a single ray and returns a list of collisions. */ void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, HitResult *hitResults, uint16_t *hitResultsLen, RayConstraints constraints); Vector2D angleToDirection(Unit angle); Unit cosInt(Unit input); Unit sinInt(Unit input); /// Normalizes given vector to have UNITS_PER_SQUARE length. Vector2D normalize(Vector2D v); /// Computes a cos of an angle between two vectors. Unit vectorsAngleCos(Vector2D v1, Vector2D v2); uint16_t sqrtInt(uint_maybe32_t value); Unit dist(Vector2D p1, Vector2D p2); Unit len(Vector2D v); /** Converts an angle in whole degrees to an angle in Units that this library uses. */ Unit degreesToUnitsAngle(int16_t degrees); ///< Computes the change in size of an object due to perspective. Unit perspectiveScale(Unit originalSize, Unit distance); /** Casts rays for given camera view and for each hit calls a user provided function. */ void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc, ColumnFunction columnFunc, RayConstraints constraints); void render(Camera cam, ArrayFunction arrayFunc, PixelFunction pixelFunc, RayConstraints constraints); //============================================================================= // privates #ifdef RAYCASTLIB_PROFILE // function call counters for profiling uint_maybe32_t profile_sqrtInt = 0; uint_maybe32_t profile_clamp = 0; uint_maybe32_t profile_cosInt = 0; uint_maybe32_t profile_angleToDirection = 0; uint_maybe32_t profile_dist = 0; uint_maybe32_t profile_len = 0; uint_maybe32_t profile_pointIsLeftOfRay = 0; uint_maybe32_t profile_castRaySquare = 0; uint_maybe32_t profile_castRayMultiHit = 0; uint_maybe32_t profile_castRay = 0; uint16_t profile_normalize = 0; uint16_t profile_vectorsAngleCos = 0; #define profileCall(c) profile_##c += 1 #define printProfile() {\ printf("profile:\n");\ printf(" sqrtInt: %d\n",profile_sqrtInt);\ printf(" clamp: %d\n",profile_clamp);\ printf(" cosInt: %d\n",profile_cosInt);\ printf(" angleToDirection: %d\n",profile_angleToDirection);\ printf(" dist: %d\n",profile_dist);\ printf(" len: %d\n",profile_len);\ printf(" pointIsLeftOfRay: %d\n",profile_pointIsLeftOfRay);\ printf(" castRaySquare: %d\n",profile_castRaySquare);\ printf(" castRayMultiHit : %d\n",profile_castRayMultiHit);\ printf(" castRay: %d\n",profile_castRay);\ printf(" normalize: %d\n",profile_normalize);\ printf(" vectorsAngleCos: %d\n",profile_vectorsAngleCos); } #else #define profileCall(c) #endif Unit clamp(Unit value, Unit valueMin, Unit valueMax) { profileCall(clamp); if (value < valueMin) return valueMin; if (value > valueMax) return valueMax; return value; } inline Unit absVal(Unit value) { return value < 0 ? -1 * value : value; } /// Performs division, rounding down, NOT towards zero. inline Unit divRoundDown(Unit value, Unit divisor) { return value / divisor - ( (value < 0) ? 1 : 0); } // Bhaskara's cosine approximation formula #define trigHelper(x) (((Unit) UNITS_PER_SQUARE) *\ (UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 - 4 * (x) * (x)) /\ (UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 + (x) * (x))) Unit cosInt(Unit input) { profileCall(cosInt); // TODO: could be optimized with LUT input = input % UNITS_PER_SQUARE; if (input < 0) input = UNITS_PER_SQUARE + input; if (input < UNITS_PER_SQUARE / 4) return trigHelper(input); else if (input < UNITS_PER_SQUARE / 2) return -1 * trigHelper(UNITS_PER_SQUARE / 2 - input); else if (input < 3 * UNITS_PER_SQUARE / 4) return -1 * trigHelper(input - UNITS_PER_SQUARE / 2); else return trigHelper(UNITS_PER_SQUARE - input); } #undef trigHelper Unit sinInt(Unit input) { return cosInt(input - UNITS_PER_SQUARE / 4); } Vector2D angleToDirection(Unit angle) { profileCall(angleToDirection); Vector2D result; result.x = cosInt(angle); result.y = -1 * sinInt(angle); return result; } uint16_t sqrtInt(uint_maybe32_t value) { profileCall(sqrtInt); uint_maybe32_t result = 0; uint_maybe32_t a = value; #ifdef RAYCAST_TINY uint_maybe32_t b = 1u << 14; #else uint_maybe32_t b = 1u << 30; #endif while (b > a) b >>= 2; while (b != 0) { if (a >= result + b) { a -= result + b; result = result + 2 * b; } b >>= 2; result >>= 1; } return result; } Unit dist(Vector2D p1, Vector2D p2) { profileCall(dist); int_maybe32_t dx = p2.x - p1.x; int_maybe32_t dy = p2.y - p1.y; dx = dx * dx; dy = dy * dy; return sqrtInt((uint_maybe32_t) (dx + dy)); } Unit len(Vector2D v) { profileCall(len); v.x *= v.x; v.y *= v.y; return sqrtInt(((uint_maybe32_t) v.x) + ((uint_maybe32_t) v.y)); } int8_t pointIsLeftOfRay(Vector2D point, Ray ray) { profileCall(pointIsLeftOfRay); Unit dX = point.x - ray.start.x; Unit dY = point.y - ray.start.y; return (ray.direction.x * dY - ray.direction.y * dX) > 0; // ^ Z component of cross-product } /** Casts a ray within a single square, to collide with the square borders. */ void castRaySquare(Ray localRay, Vector2D *nextCellOff, Vector2D *collOff) { profileCall(castRaySquare); nextCellOff->x = 0; nextCellOff->y = 0; Ray criticalLine = localRay; #define helper(c1,c2,n)\ {\ nextCellOff->c1 = n;\ collOff->c1 = criticalLine.start.c1 - localRay.start.c1;\ collOff->c2 = \ (((int_maybe32_t) collOff->c1) * localRay.direction.c2) /\ ((localRay.direction.c1 == 0) ? 1 : localRay.direction.c1);\ } #define helper2(n1,n2,c)\ if (pointIsLeftOfRay(localRay.start,criticalLine) == c)\ helper(y,x,n1)\ else\ helper(x,y,n2) if (localRay.direction.x > 0) { criticalLine.start.x = UNITS_PER_SQUARE - 1; if (localRay.direction.y > 0) { // top right criticalLine.start.y = UNITS_PER_SQUARE - 1; helper2(1,1,1) } else { // bottom right criticalLine.start.y = 0; helper2(-1,1,0) } } else { criticalLine.start.x = 0; if (localRay.direction.y > 0) { // top left criticalLine.start.y = UNITS_PER_SQUARE - 1; helper2(1,-1,0) } else { // bottom left criticalLine.start.y = 0; helper2(-1,-1,1) } } #undef helper2 #undef helper collOff->x += nextCellOff->x; collOff->y += nextCellOff->y; } void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, HitResult *hitResults, uint16_t *hitResultsLen, RayConstraints constraints) { profileCall(castRayMultiHit); Vector2D initialPos = ray.start; Vector2D currentPos = ray.start; Vector2D currentSquare; currentSquare.x = divRoundDown(ray.start.x, UNITS_PER_SQUARE); currentSquare.y = divRoundDown(ray.start.y,UNITS_PER_SQUARE); *hitResultsLen = 0; int16_t squareType = arrayFunc(currentSquare.x,currentSquare.y); Vector2D no, co; // next cell offset, collision offset no.x = 0; // just to supress a warning no.y = 0; for (uint16_t i = 0; i < constraints.maxSteps; ++i) { int16_t currentType = arrayFunc(currentSquare.x,currentSquare.y); if (currentType != squareType) { // collision HitResult h; h.position = currentPos; h.square = currentSquare; h.distance = dist(initialPos,currentPos); if (no.y > 0) { h.direction = 0; h.textureCoord = co.x; } else if (no.x > 0) { h.direction = 1; h.textureCoord = co.y; } else if (no.y < 0) { h.direction = 2; h.textureCoord = co.x; } else { h.direction = 3; h.textureCoord = co.y; } hitResults[*hitResultsLen] = h; *hitResultsLen += 1; squareType = currentType; if (*hitResultsLen >= constraints.maxHits) break; } ray.start.x = currentPos.x < 0 ? (UNITS_PER_SQUARE + currentPos.x % UNITS_PER_SQUARE - 1) : (currentPos.x % UNITS_PER_SQUARE); ray.start.y = currentPos.y < 0 ? (UNITS_PER_SQUARE + currentPos.y % UNITS_PER_SQUARE - 1) : (currentPos.y % UNITS_PER_SQUARE); castRaySquare(ray,&no,&co); currentSquare.x += no.x; currentSquare.y += no.y; // offset into the next cell currentPos.x += co.x; currentPos.y += co.y; } } HitResult castRay(Ray ray, ArrayFunction arrayFunc) { profileCall(castRay); HitResult result; uint16_t len; RayConstraints c; c.maxSteps = 1000; c.maxHits = 1; castRayMultiHit(ray,arrayFunc,&result,&len,c); if (len == 0) result.distance = -1; return result; } void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc, ColumnFunction columnFunc, RayConstraints constraints) { uint16_t fovHalf = cam.fovAngle / 2; Vector2D dir1 = angleToDirection(cam.direction - fovHalf); Vector2D dir2 = angleToDirection(cam.direction + fovHalf); Unit dX = dir2.x - dir1.x; Unit dY = dir2.y - dir1.y; HitResult hits[constraints.maxHits]; Ray rays[constraints.maxHits]; uint16_t hitCount; Ray r; r.start = cam.position; for (uint16_t i = 0; i < cam.resolution.x; ++i) { r.direction.x = dir1.x + (dX * i) / cam.resolution.x; r.direction.y = dir1.y + (dY * i) / cam.resolution.x; castRayMultiHit(r,arrayFunc,hits,&hitCount,constraints); columnFunc(hits,hitCount,i,r); } } PixelFunction _pixelFunction = 0; ArrayFunction _arrayFunction = 0; Camera _camera; Unit _floorDepthStep = 0; Unit _startHeight = 0; int_maybe32_t _camResYLimit = 0; Unit _middleRow = 0; void _columnFunction(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray) { int_maybe32_t y = _camResYLimit; // screen y (for floor), will only go up int_maybe32_t y2 = 0; // screen y (for ceil), will only fo down Unit worldZPrev = _startHeight; Unit worldZPrevCeil = UNITS_PER_SQUARE * 5 - _startHeight - 2 * _camera.height; PixelInfo p; p.position.x = x; #define VERTICAL_DEPTH_MULTIPLY 2 // we'll be simulatenously drawing the floor and the ceiling now for (uint_maybe32_t j = 0; j < hitCount; ++j) { HitResult hit = hits[j]; /* FIXME/TODO: The adjusted (=orthogonal, camera-space) distance could possibly be computed more efficiently by not computing Euclidean distance at all, but rather compute the distance of the collision point from the projection plane (line). */ Unit dist = // adjusted distance (hit.distance * vectorsAngleCos(angleToDirection(_camera.direction), ray.direction)) / UNITS_PER_SQUARE; dist = dist == 0 ? 1 : dist; // prevent division by zero Unit wallHeight = _arrayFunction(hit.square.x,hit.square.y); Unit worldZ2 = wallHeight - _camera.height; Unit worldZ2Ceil = (UNITS_PER_SQUARE * 5 - wallHeight) - _camera.height; int_maybe32_t z1Screen = _middleRow - perspectiveScale( (worldZPrev * _camera.resolution.y) / UNITS_PER_SQUARE,dist); int_maybe32_t z1ScreenNoClamp = z1Screen; z1Screen = clamp(z1Screen,0,_camResYLimit); int_maybe32_t z1ScreenCeil = _middleRow - perspectiveScale( (worldZPrevCeil * _camera.resolution.y) / UNITS_PER_SQUARE,dist); int_maybe32_t z1ScreenCeilNoClamp = z1ScreenCeil; z1ScreenCeil = clamp(z1ScreenCeil,0,_camResYLimit); int_maybe32_t z2Screen = _middleRow - perspectiveScale( (worldZ2 * _camera.resolution.y) / UNITS_PER_SQUARE,dist); int_maybe32_t wallScreenHeightNoClamp = z2Screen - z1ScreenNoClamp; z2Screen = clamp(z2Screen,0,_camResYLimit); int_maybe32_t z2ScreenCeil = _middleRow - perspectiveScale( (worldZ2Ceil * _camera.resolution.y) / UNITS_PER_SQUARE,dist); int_maybe32_t wallScreenHeightCeilNoClamp = z2ScreenCeil - z1ScreenCeilNoClamp; z2ScreenCeil = clamp(z2ScreenCeil,0,_camResYLimit); int_maybe32_t zTop = z1Screen < z2Screen ? z1Screen : z2Screen; int_maybe32_t zBottomCeil = z1ScreenCeil > z2ScreenCeil ? z1ScreenCeil : z2ScreenCeil; if (zTop <= zBottomCeil) zBottomCeil = zTop; // walls on ceiling and floor met // draw floor until wall p.isWall = 0; Unit floorCameraDiff = absVal(worldZPrev) * VERTICAL_DEPTH_MULTIPLY; for (int_maybe32_t i = y; i > z1Screen; --i) { p.position.y = i; p.depth = (_camera.resolution.y - i) * _floorDepthStep + floorCameraDiff; _pixelFunction(p); } // draw ceiling until wall Unit ceilCameraDiff = absVal(worldZPrevCeil) * VERTICAL_DEPTH_MULTIPLY; for (int_maybe32_t i = y2; i < z1ScreenCeil; ++i) { p.position.y = i; p.depth = i * _floorDepthStep + ceilCameraDiff; _pixelFunction(p); } // draw wall p.isWall = 1; p.depth = dist; for (int_maybe32_t i = z1Screen < y ? z1Screen : y; i > z2Screen; --i) { p.position.y = i; p.hit = hit; p.textureCoordY = ((i - z1ScreenNoClamp) * UNITS_PER_SQUARE) / wallScreenHeightNoClamp; _pixelFunction(p); } // draw ceiling wall for (int_maybe32_t i = z1ScreenCeil > y2 ? z1ScreenCeil : y2; i < z2ScreenCeil; ++i) { p.position.y = i; p.hit = hit; p.textureCoordY = ((i - z1ScreenCeilNoClamp) * UNITS_PER_SQUARE) / wallScreenHeightCeilNoClamp; _pixelFunction(p); } y = y > zTop ? zTop : y; worldZPrev = worldZ2; y2 = y2 < zBottomCeil ? zBottomCeil : y2; worldZPrevCeil = worldZ2Ceil; if (y <= y2) break; // walls on ceiling and floor met } // draw floor until horizon p.isWall = 0; Unit floorCameraDiff = absVal(worldZPrev) * VERTICAL_DEPTH_MULTIPLY; Unit horizon = y2 < _middleRow ? _middleRow : y2; for (int_maybe32_t i = y; i >= horizon; --i) { p.position.y = i; p.depth = (_camera.resolution.y - i) * _floorDepthStep + floorCameraDiff; _pixelFunction(p); } // draw ceiling until horizon Unit ceilCameraDiff = absVal(worldZPrevCeil) * VERTICAL_DEPTH_MULTIPLY; horizon = y > _middleRow ? _middleRow : y; for (int_maybe32_t i = y2; i < horizon; ++i) { p.position.y = i; p.depth = i * _floorDepthStep + ceilCameraDiff; _pixelFunction(p); } #undef VERTICAL_DEPTH_MULTIPLY } void render(Camera cam, ArrayFunction arrayFunc, PixelFunction pixelFunc, RayConstraints constraints) { _pixelFunction = pixelFunc; _arrayFunction = arrayFunc; _camera = cam; _camResYLimit = cam.resolution.y - 1; _middleRow = cam.resolution.y / 2; _startHeight = arrayFunc( divRoundDown(cam.position.x,UNITS_PER_SQUARE), divRoundDown(cam.position.y,UNITS_PER_SQUARE)) -1 * cam.height; // TODO _floorDepthStep = (12 * UNITS_PER_SQUARE) / cam.resolution.y; castRaysMultiHit(cam,arrayFunc,_columnFunction,constraints); } Vector2D normalize(Vector2D v) { profileCall(normalize); Vector2D result; Unit l = len(v); l = l == 0 ? 1 : l; result.x = (v.x * UNITS_PER_SQUARE) / l; result.y = (v.y * UNITS_PER_SQUARE) / l; return result; } Unit vectorsAngleCos(Vector2D v1, Vector2D v2) { profileCall(vectorsAngleCos); v1 = normalize(v1); v2 = normalize(v2); return (v1.x * v2.x + v1.y * v2.y) / UNITS_PER_SQUARE; } Unit degreesToUnitsAngle(int16_t degrees) { return (degrees * UNITS_PER_SQUARE) / 360; } Unit perspectiveScale(Unit originalSize, Unit distance) { return (originalSize * UNITS_PER_SQUARE) / ((VERTICAL_FOV * 2 * distance) / UNITS_PER_SQUARE); // ^ approximation of tan function } #endif