#include #include /** author: Miloslav "drummyfish" Ciz license: CC0 - Game field's bottom left corner is at [0,0]. - X axis goes right. - Y axis goes up. - Each game square is UNITS_PER_SQUARE * UNITS_PER_SQUARE. */ #define UNITS_PER_SQUARE 1024 typedef int32_t Unit; /**< Smallest spatial unit, there is UNITS_PER_SQUARE units in a square's length. */ /// Position in 2D space. typedef struct { int32_t y; int32_t x; } Vector2D; typedef struct { Vector2D start; Vector2D direction; } Ray; typedef struct { Vector2D square; ///< Collided square coordinates. Vector2D position; ///< Exact collision position in Units. Unit distance; /**< Euclidean distance to the hit position, or -1 if no collision happened. */ Unit textureCoord; /**< Normalized (0 to UNITS_PER_SQUARE - 1) texture coordinate. */ } HitResult; /** Casts a single ray and returns the first collision result. @param Ray Ray to be cast. @param arrayFunc Function that for x and y array coordinates (in squares, NOT Units) returns a type of square (just a number) - transition between two squares of different types (values) is considered a collision). @param maxSteps Maximum number of steps (in squares) to trace the ray. @return The first collision result. */ HitResult castRay(Ray ray, int16_t (*arrayFunc)(int16_t, int16_t), uint16_t maxSteps); //============================================================================= // privates #define logVector2D(v) printf("[%d,%d]\n",v.x,v.y) #define logRay(r) printf("ray:\n");\ printf(" start: "); logVector2D(r.start);\ printf(" dir: "); logVector2D(r.direction); #define logHitResult(h) printf("hit:\n");\ printf(" sqaure: "); logVector2D(h.square);\ printf(" pos: "); logVector2D(h.position);\ printf(" dist: %d", h.distance);\ printf(" texcoord: %d", h.textureCoord); uint16_t sqrtInt(uint32_t value) { uint32_t result = 0; uint32_t a = value; uint32_t b = 1u << 30; while (b > a) b >>= 2; while (b != 0) { if (a >= result + b) { a -= result + b; result = result + 2 * b; } b >>= 2; result >>= 1; } return result; } Unit dist(Vector2D p1, Vector2D p2) { Unit dx = p2.x - p1.x; Unit dy = p2.y - p1.y; return sqrtInt(((uint16_t) dx * dx) + ((uint16_t) dy * dy)); } int8_t pointIsLeftOfRay(Vector2D point, Ray ray) { int dX = point.x - ray.start.x; int dY = point.y - ray.start.y; return (ray.direction.x * dY - ray.direction.y * dX) > 0; // ^ Z component of cross-product } /** Casts a ray within a single square, to collide with the square borders. */ void castRaySquare(Ray localRay, Vector2D *nextCellOffset, Vector2D *collisionPointOffset) { nextCellOffset->x = 0; nextCellOffset->y = 0; Ray criticalLine = localRay; #define helper(c1,c2,n)\ {\ nextCellOffset->c1 = n;\ collisionPointOffset->c1 = criticalLine.start.c1 - localRay.start.c1;\ collisionPointOffset->c2 =\ (collisionPointOffset->c1 * localRay.direction.c2) /\ (localRay.direction.c1 == 0 ? 1 : localRay.direction.c1);\ } #define helper2(n1,n2,c)\ if (pointIsLeftOfRay(localRay.start,criticalLine) == c)\ helper(y,x,n1)\ else\ helper(x,y,n2) if (localRay.direction.x > 0) { criticalLine.start.x = UNITS_PER_SQUARE; if (localRay.direction.y > 0) { // top right criticalLine.start.y = UNITS_PER_SQUARE; helper2(1,1,1) } else { // bottom right criticalLine.start.y = -1; helper2(-1,1,0) } } else { criticalLine.start.x = -1; if (localRay.direction.y > 0) { // top left criticalLine.start.y = UNITS_PER_SQUARE; helper2(1,-1,0) } else { // bottom left criticalLine.start.y = -1; helper2(-1,-1,1) } } #undef helper2 #undef helper } HitResult castRay(Ray ray, int16_t (*arrayFunc)(int16_t, int16_t), uint16_t maxSteps) { HitResult result; Vector2D initialPos = ray.start; result.distance = -1; result.square.x = ray.start.x / UNITS_PER_SQUARE; result.square.y = ray.start.y / UNITS_PER_SQUARE; result.position = ray.start; int16_t squareType = arrayFunc(result.square.x,result.square.y); for (uint16_t i = 0; i < maxSteps; ++i) { if (arrayFunc(result.square.x,result.square.y) != squareType) { result.distance = dist(initialPos,result.position); //result.textureCoord = break; } ray.start.x = result.position.x % UNITS_PER_SQUARE; ray.start.y = result.position.y % UNITS_PER_SQUARE; Vector2D no, co; castRaySquare(ray,&no,&co); result.square.x += no.x; result.square.y += no.y; result.position.x += co.x; result.position.y += co.y; } return result; } int16_t testArrayFunc(int16_t x, int16_t y) { return (x < 0 || y < 0 || x > 9 || y > 9) ? 1 : 0; } /** Simple automatic test function. */ int testSingleRay(Unit startX, Unit startY, Unit dirX, Unit dirY, int16_t expectSquareX, int16_t expectSquareY, int16_t expectPointX, int16_t expectPointY, int16_t tolerateError) { Ray r; r.start.x = startX; r.start.y = startY; r.direction.x = dirX; r.direction.y = dirY; HitResult h = castRay(r,testArrayFunc,20); return h.square.x == expectSquareX && h.square.y == expectSquareY && h.position.x <= expectPointX + tolerateError && h.position.x >= expectPointX - tolerateError && h.position.y <= expectPointY + tolerateError && h.position.y >= expectPointY - tolerateError; } int test() { if (!testSingleRay( 3 * UNITS_PER_SQUARE + UNITS_PER_SQUARE / 2, 4 * UNITS_PER_SQUARE + UNITS_PER_SQUARE / 2, 100, 50, 10, 7, 10240, 7936, 16)) return 0; return 1; } int main() { printf("%d\n",test()); return 0; } #undef logVector2D #undef logRay #undef logHitResult