#ifndef RAYCASTLIB_H #define RAYCASTLIB_H /** raycastlib - Small C header-only raycasting library for embedded and low performance computers, such as Arduino. Only uses integer math and stdint standard library. Check the defines below to fine-tune accuracy vs performance! Don't forget to compile with optimizations. Before includinf the library efine PIXEL_FUNCTION to the name of the function (with PixelFunction signature) that will render your pixels! author: Miloslav "drummyfish" Ciz license: CC0 version: 0.1 - Game field's bottom left corner is at [0,0]. - X axis goes right in the ground plane. - Y axis goes up in the ground plane. - Height means the Z (vertical) coordinate. - Each game square is UNITS_PER_SQUARE * UNITS_PER_SQUARE points. - Angles are in Units, 0 means pointing right (x+) and positively rotates clockwise. A full angle has UNITS_PER_SQUARE Units. */ #include #ifndef RAYCAST_TINY /** Turns on super efficient version of this library. Only use if neccesarry, looks ugly. */ #define UNITS_PER_SQUARE 1024 ///< N. of Units in a side of a spatial square. typedef int32_t Unit; /**< Smaller spatial unit, there is UNITS_PER_SQUARE units in a square's length. This effectively serves the purpose of a fixed-point arithmetic. */ #define UNIT_INFINITY 5000000; #else #define UNITS_PER_SQUARE 32 typedef int16_t Unit; #define UNIT_INFINITY 32000; #define USE_DIST_APPROX 2 #endif #ifndef COMPUTE_WALL_TEXCOORDS #define COMPUTE_WALL_TEXCOORDS 1 #endif #ifndef USE_COS_LUT #define USE_COS_LUT 0 /**< type of look up table for cos function: 0: none (compute) 1: 64 items 2: 128 items */ #endif #ifndef USE_DIST_APPROX #define USE_DIST_APPROX 0 /**< What distance approximation to use: 0: none (compute full Euclidean distance) 1: accurate approximation 2: octagonal approximation (LQ) */ #endif #ifndef ROLL_TEXTURE_COORDS #define ROLL_TEXTURE_COORDS 1 /**< Says whether rolling doors should also roll the texture coordinates along (mostly desired for doors). */ #endif #ifndef VERTICAL_FOV #define VERTICAL_FOV (UNITS_PER_SQUARE / 2) #endif #ifndef HORIZONTAL_FOV #define HORIZONTAL_FOV (UNITS_PER_SQUARE / 4) #endif #define HORIZONTAL_FOV_HALF (HORIZONTAL_FOV / 2) #ifndef CAMERA_COLL_RADIUS #define CAMERA_COLL_RADIUS UNITS_PER_SQUARE / 4 #endif #ifndef CAMERA_COLL_HEIGHT_BELOW #define CAMERA_COLL_HEIGHT_BELOW UNITS_PER_SQUARE #endif #ifndef CAMERA_COLL_HEIGHT_ABOVE #define CAMERA_COLL_HEIGHT_ABOVE (UNITS_PER_SQUARE / 3) #endif #ifndef CAMERA_COLL_STEP_HEIGHT #define CAMERA_COLL_STEP_HEIGHT (UNITS_PER_SQUARE / 2) #endif #ifndef MIN_TEXTURE_STEP #define MIN_TEXTURE_STEP 12 /**< Specifies the minimum step in pixels that can be used to compute texture coordinates in a fast way. Smallet step will trigger a more expensive way of computing texture coords. */ #endif #define logVector2D(v)\ printf("[%d,%d]\n",v.x,v.y); #define logRay(r){\ printf("ray:\n");\ printf(" start: ");\ logVector2D(r.start);\ printf(" dir: ");\ logVector2D(r.direction);}\ #define logHitResult(h){\ printf("hit:\n");\ printf(" sqaure: ");\ logVector2D(h.square);\ printf(" pos: ");\ logVector2D(h.position);\ printf(" dist: %d\n", h.distance);\ printf(" texcoord: %d\n", h.textureCoord);}\ #define logPixelInfo(p){\ printf("pixel:\n");\ printf(" position: ");\ logVector2D(p.position);\ printf(" depth: %d\n", p.depth);\ printf(" wall: %d\n", p.isWall);\ printf(" hit: ");\ logHitResult(p.hit);\ }\ /// Position in 2D space. typedef struct { Unit x; Unit y; } Vector2D; typedef struct { Vector2D start; Vector2D direction; } Ray; typedef struct { Unit distance; /**< Euclidean distance to the hit position, or -1 if no collision happened. */ uint8_t direction; ///< Direction of hit. Unit textureCoord; ///< Normalized (0 to UNITS_PER_SQUARE - 1) tex coord. Vector2D square; ///< Collided square coordinates. Vector2D position; ///< Exact collision position in Units. Unit arrayValue; /** Value returned by array function (most often this will be the floor height). */ Unit type; /**< Integer identifying type of square (number returned by type function, e.g. texture index).*/ Unit doorRoll; ///< Holds value of door roll. } HitResult; typedef struct { Vector2D position; Unit direction; Vector2D resolution; int16_t shear; /* Shear offset in pixels (0 => no shear), can simulate looking up/down. */ Unit height; } Camera; /** Holds an information about a single rendered pixel (for a pixel function that works as a fragment shader). */ typedef struct { Vector2D position; ///< On-screen position. int8_t isWall; ///< Whether the pixel is a wall or a floor/ceiling. int8_t isFloor; ///< Whether the pixel is floor or ceiling. int8_t isHorizon; ///< Whether the pixel is floor going towards horizon. Unit depth; ///< Corrected depth. HitResult hit; ///< Corresponding ray hit. Vector2D texCoords; /**< Normalized (0 to UNITS_PER_SQUARE - 1) texture coordinates. */ } PixelInfo; void PIXEL_FUNCTION (PixelInfo *p); typedef struct { uint16_t maxHits; uint16_t maxSteps; } RayConstraints; /** Function used to retrieve some information about cells of the rendered scene. It should return a characteristic of given square as an integer (e.g. square height, texture index, ...) - between squares that return different numbers there is considered to be a collision. This function should be as fast as possible as it will typically be called very often. */ typedef Unit (*ArrayFunction)(int16_t x, int16_t y); /** Function that renders a single pixel at the display. It is handed an info about the pixel it should draw. This function should be as fast as possible as it will typically be called very often. */ typedef void (*PixelFunction)(PixelInfo *info); typedef void (*ColumnFunction)(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray); /** Simple-interface function to cast a single ray. @return The first collision result. */ HitResult castRay(Ray ray, ArrayFunction arrayFunc); /** Maps a single point in the world to the screen (2D position + depth). */ PixelInfo mapToScreen(Vector2D worldPosition, Unit height, Camera camera); /** Casts a single ray and returns a list of collisions. @param ray ray to be cast @param arrayFunc function that will be used to determine collisions (hits) with the ray (squares for which this function returns different values are considered to have a collision between them), this will typically be a function returning floor height @param typeFunc optional (can be 0) function - if provided, it will be used to mark the hit result with the number returned by this function (it can be e.g. a texture index) @param hitResults array in which the hit results will be stored (has to be preallocated with at space for at least as many hit results as maxHits specified with the constraints parameter) @param hitResultsLen in this variable the number of hit results will be returned @param constraints specifies constraints for the ray cast */ void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, ArrayFunction typeFunc, HitResult *hitResults, uint16_t *hitResultsLen, RayConstraints constraints); Vector2D angleToDirection(Unit angle); /** Cos function. @param input to cos in Units (UNITS_PER_SQUARE = 2 * pi = 360 degrees) @return normalized output in Units (from -UNITS_PER_SQUARE to UNITS_PER_SQUARE) */ Unit cosInt(Unit input); Unit sinInt(Unit input); /// Normalizes given vector to have UNITS_PER_SQUARE length. Vector2D normalize(Vector2D v); /// Computes a cos of an angle between two vectors. Unit vectorsAngleCos(Vector2D v1, Vector2D v2); uint16_t sqrtInt(Unit value); Unit dist(Vector2D p1, Vector2D p2); Unit len(Vector2D v); /** Converts an angle in whole degrees to an angle in Units that this library uses. */ Unit degreesToUnitsAngle(int16_t degrees); ///< Computes the change in size of an object due to perspective. Unit perspectiveScale(Unit originalSize, Unit distance); Unit perspectiveScaleInverse(Unit originalSize, Unit scaledSize); /** Casts rays for given camera view and for each hit calls a user provided function. */ void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc, ArrayFunction typeFunction, ColumnFunction columnFunc, RayConstraints constraints); /** Using provided functions, renders a complete complex camera view. This function should render each screen pixel exactly once. function rendering summary: - performance: slower - accuracy: higher - wall textures: yes - different wall heights: yes - floor/ceiling textures: no - floor geometry: yes, multilevel - ceiling geometry: yes (optional), multilevel - rolling door: no @param cam camera whose view to render @param floorHeightFunc function that returns floor height (in Units) @param ceilingHeightFunc same as floorHeightFunc but for ceiling, can also be 0 (no ceiling will be rendered) @param typeFunction function that says a type of square (e.g. its texture index), can be 0 (no type in hit result) @param pixelFunc callback function to draw a single pixel on screen @param constraints constraints for each cast ray */ void render(Camera cam, ArrayFunction floorHeightFunc, ArrayFunction ceilingHeightFunc, ArrayFunction typeFunction, RayConstraints constraints); /** Renders given camera view, with help of provided functions. This function is simpler and faster than render(...) and is meant to be rendering scenes with simple 1-intersection raycasting. The render(...) function can give more accurate results than this function, so it's to be considered even for simple scenes. function rendering summary: - performance: faster - accuracy: lower - wall textures: yes - different wall heights: yes - floor/ceiling textures: no - floor geometry: no (just flat floor, with depth information) - ceiling geometry: no (just flat ceiling, with depth information) - rolling door: yes Additionally this function supports rendering rolling doors. This function should render each screen pixel exactly once. @param rollFunc function that for given square says its door roll in Units (0 = no roll, UNITS_PER_SQUARE = full roll right, -UNITS_PER_SQUARE = full roll left), can be zero (no rolling door, rendering should also be faster as fewer intersections will be tested) */ void renderSimple(Camera cam, ArrayFunction floorHeightFunc, ArrayFunction typeFunc, ArrayFunction rollFunc, RayConstraints constraints); /** Function that moves given camera and makes it collide with walls and potentially also floor and ceilings. It's meant to help implement player movement. @param camera camera to move @param planeOffset offset to move the camera in @param heightOffset height offset to move the camera in @param floorHeightFunc function used to retrieve the floor height @param ceilingHeightFunc function for retrieving ceiling height, can be 0 (camera won't collide with ceiling) @param computeHeight whether to compute height - if false (0), floor and ceiling functions won't be used and the camera will only collide horizontally with walls (good for simpler game, also faster) @param force if true, forces to recompute collision even if position doesn't change */ void moveCameraWithCollision(Camera *camera, Vector2D planeOffset, Unit heightOffset, ArrayFunction floorHeightFunc, ArrayFunction ceilingHeightFunc, int8_t computeHeight, int8_t force); void initCamera(Camera *camera); void initRayConstraints(RayConstraints *constraints); //============================================================================= // privates // global helper variables, for precomputing stuff etc. Camera _camera; Unit _horizontalDepthStep = 0; Unit _startFloorHeight = 0; Unit _startCeilHeight = 0; Unit _camResYLimit = 0; Unit _middleRow = 0; ArrayFunction _floorFunction = 0; ArrayFunction _ceilFunction = 0; Unit _fHorizontalDepthStart = 0; Unit _cHorizontalDepthStart = 0; int16_t _cameraHeightScreen = 0; ArrayFunction _rollFunction = 0; // says door rolling #ifdef RAYCASTLIB_PROFILE // function call counters for profiling uint32_t profile_sqrtInt = 0; uint32_t profile_clamp = 0; uint32_t profile_cosInt = 0; uint32_t profile_angleToDirection = 0; uint32_t profile_dist = 0; uint32_t profile_len = 0; uint32_t profile_pointIsLeftOfRay = 0; uint32_t profile_castRaySquare = 0; uint32_t profile_castRayMultiHit = 0; uint32_t profile_castRay = 0; uint32_t profile_absVal = 0; uint32_t profile_normalize = 0; uint32_t profile_vectorsAngleCos = 0; uint32_t profile_perspectiveScale = 0; uint32_t profile_wrap = 0; uint32_t profile_divRoundDown = 0; #define profileCall(c) profile_##c += 1 #define printProfile() {\ printf("profile:\n");\ printf(" sqrtInt: %d\n",profile_sqrtInt);\ printf(" clamp: %d\n",profile_clamp);\ printf(" cosInt: %d\n",profile_cosInt);\ printf(" angleToDirection: %d\n",profile_angleToDirection);\ printf(" dist: %d\n",profile_dist);\ printf(" len: %d\n",profile_len);\ printf(" pointIsLeftOfRay: %d\n",profile_pointIsLeftOfRay);\ printf(" castRaySquare: %d\n",profile_castRaySquare);\ printf(" castRayMultiHit : %d\n",profile_castRayMultiHit);\ printf(" castRay: %d\n",profile_castRay);\ printf(" normalize: %d\n",profile_normalize);\ printf(" vectorsAngleCos: %d\n",profile_vectorsAngleCos);\ printf(" absVal: %d\n",profile_absVal);\ printf(" perspectiveScale: %d\n",profile_perspectiveScale);\ printf(" wrap: %d\n",profile_wrap);\ printf(" divRoundDown: %d\n",profile_divRoundDown); } #else #define profileCall(c) #endif Unit clamp(Unit value, Unit valueMin, Unit valueMax) { profileCall(clamp); if (value >= valueMin) { if (value <= valueMax) return value; else return valueMax; } else return valueMin; } static inline Unit absVal(Unit value) { profileCall(absVal); return value >= 0 ? value : -1 * value; } /// Like mod, but behaves differently for negative values. static inline Unit wrap(Unit value, Unit mod) { profileCall(wrap); return value >= 0 ? (value % mod) : (mod + (value % mod) - 1); } /// Performs division, rounding down, NOT towards zero. static inline Unit divRoundDown(Unit value, Unit divisor) { profileCall(divRoundDown); return value / divisor - ((value >= 0) ? 0 : 1); } // Bhaskara's cosine approximation formula #define trigHelper(x) (((Unit) UNITS_PER_SQUARE) *\ (UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 - 4 * (x) * (x)) /\ (UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 + (x) * (x))) #if USE_COS_LUT == 1 #ifdef RAYCAST_TINY const Unit cosLUT[64] = { 16,14,11,6,0,-6,-11,-14,-15,-14,-11,-6,0,6,11,14 }; #else const Unit cosLUT[64] = { 1024,1019,1004,979,946,903,851,791,724,649,568,482,391,297,199,100,0,-100, -199,-297,-391,-482,-568,-649,-724,-791,-851,-903,-946,-979,-1004,-1019, -1023,-1019,-1004,-979,-946,-903,-851,-791,-724,-649,-568,-482,-391,-297, -199,-100,0,100,199,297,391,482,568,649,724,791,851,903,946,979,1004,1019 }; #endif #elif USE_COS_LUT == 2 const Unit cosLUT[128] = { 1024,1022,1019,1012,1004,993,979,964,946,925,903,878,851,822,791,758,724, 687,649,609,568,526,482,437,391,344,297,248,199,150,100,50,0,-50,-100,-150, -199,-248,-297,-344,-391,-437,-482,-526,-568,-609,-649,-687,-724,-758,-791, -822,-851,-878,-903,-925,-946,-964,-979,-993,-1004,-1012,-1019,-1022,-1023, -1022,-1019,-1012,-1004,-993,-979,-964,-946,-925,-903,-878,-851,-822,-791, -758,-724,-687,-649,-609,-568,-526,-482,-437,-391,-344,-297,-248,-199,-150, -100,-50,0,50,100,150,199,248,297,344,391,437,482,526,568,609,649,687,724, 758,791,822,851,878,903,925,946,964,979,993,1004,1012,1019,1022 }; #endif Unit cosInt(Unit input) { profileCall(cosInt); // TODO: could be optimized with LUT input = wrap(input,UNITS_PER_SQUARE); #if USE_COS_LUT == 1 #ifdef RAYCAST_TINY return cosLUT[input]; #else return cosLUT[input / 16]; #endif #elif USE_COS_LUT == 2 return cosLUT[input / 8]; #else if (input < UNITS_PER_SQUARE / 4) return trigHelper(input); else if (input < UNITS_PER_SQUARE / 2) return -1 * trigHelper(UNITS_PER_SQUARE / 2 - input); else if (input < 3 * UNITS_PER_SQUARE / 4) return -1 * trigHelper(input - UNITS_PER_SQUARE / 2); else return trigHelper(UNITS_PER_SQUARE - input); #endif } #undef trigHelper Unit sinInt(Unit input) { return cosInt(input - UNITS_PER_SQUARE / 4); } Vector2D angleToDirection(Unit angle) { profileCall(angleToDirection); Vector2D result; result.x = cosInt(angle); result.y = -1 * sinInt(angle); return result; } uint16_t sqrtInt(Unit value) { profileCall(sqrtInt); #ifdef RAYCAST_TINY uint16_t result = 0; uint16_t a = value; uint16_t b = 1u << 14; #else uint32_t result = 0; uint32_t a = value; uint32_t b = 1u << 30; #endif while (b > a) b >>= 2; while (b != 0) { if (a >= result + b) { a -= result + b; result = result + 2 * b; } b >>= 2; result >>= 1; } return result; } Unit dist(Vector2D p1, Vector2D p2) { profileCall(dist); Unit dx = p2.x - p1.x; Unit dy = p2.y - p1.y; #if USE_DIST_APPROX == 2 // octagonal approximation dx = absVal(dx); dy = absVal(dy); return dy > dx ? dx / 2 + dy : dy / 2 + dx; #elif USE_DIST_APPROX == 1 // more accurate approximation Unit a, b, result; dx = dx < 0 ? -1 * dx : dx; dy = dy < 0 ? -1 * dy : dy; if (dx < dy) { a = dy; b = dx; } else { a = dx; b = dy; } result = a + (44 * b) / 102; if (a < (b << 4)) result -= (5 * a) / 128; return result; #else dx = dx * dx; dy = dy * dy; return sqrtInt((Unit) (dx + dy)); #endif } Unit len(Vector2D v) { profileCall(len); Vector2D zero; zero.x = 0; zero.y = 0; return dist(zero,v); } static inline int8_t pointIsLeftOfRay(Vector2D point, Ray ray) { profileCall(pointIsLeftOfRay); Unit dX = point.x - ray.start.x; Unit dY = point.y - ray.start.y; return (ray.direction.x * dY - ray.direction.y * dX) > 0; // ^ Z component of cross-product } /** Casts a ray within a single square, to collide with the square borders. */ void castRaySquare(Ray *localRay, Vector2D *nextCellOff, Vector2D *collOff) { profileCall(castRaySquare); nextCellOff->x = 0; nextCellOff->y = 0; Ray criticalLine; criticalLine.start = localRay->start; criticalLine.direction = localRay->direction; #define helper(c1,c2,n)\ {\ nextCellOff->c1 = n;\ collOff->c1 = criticalLine.start.c1 - localRay->start.c1;\ collOff->c2 = \ (((Unit) collOff->c1) * localRay->direction.c2) /\ ((localRay->direction.c1 == 0) ? 1 : localRay->direction.c1);\ } #define helper2(n1,n2,c)\ if (pointIsLeftOfRay(localRay->start,criticalLine) == c)\ helper(y,x,n1)\ else\ helper(x,y,n2) if (localRay->direction.x > 0) { criticalLine.start.x = UNITS_PER_SQUARE - 1; if (localRay->direction.y > 0) { // top right criticalLine.start.y = UNITS_PER_SQUARE - 1; helper2(1,1,1) } else { // bottom right criticalLine.start.y = 0; helper2(-1,1,0) } } else { criticalLine.start.x = 0; if (localRay->direction.y > 0) { // top left criticalLine.start.y = UNITS_PER_SQUARE - 1; helper2(1,-1,0) } else { // bottom left criticalLine.start.y = 0; helper2(-1,-1,1) } } #undef helper2 #undef helper collOff->x += nextCellOff->x; collOff->y += nextCellOff->y; } void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, ArrayFunction typeFunc, HitResult *hitResults, uint16_t *hitResultsLen, RayConstraints constraints) { profileCall(castRayMultiHit); Vector2D initialPos = ray.start; Vector2D currentPos = ray.start; Vector2D currentSquare; currentSquare.x = divRoundDown(ray.start.x, UNITS_PER_SQUARE); currentSquare.y = divRoundDown(ray.start.y,UNITS_PER_SQUARE); *hitResultsLen = 0; Unit squareType = arrayFunc(currentSquare.x,currentSquare.y); Vector2D no, co; // next cell offset, collision offset no.x = 0; // just to supress a warning no.y = 0; co.x = 0; co.y = 0; for (uint16_t i = 0; i < constraints.maxSteps; ++i) { Unit currentType = arrayFunc(currentSquare.x,currentSquare.y); if (currentType != squareType) { // collision HitResult h; h.arrayValue = currentType; h.doorRoll = 0; h.position = currentPos; h.square = currentSquare; h.distance = dist(initialPos,currentPos); if (typeFunc != 0) h.type = typeFunc(currentSquare.x,currentSquare.y); if (no.y > 0) { h.direction = 0; #if COMPUTE_WALL_TEXCOORDS == 1 h.textureCoord = wrap(currentPos.x,UNITS_PER_SQUARE); #endif } else if (no.x > 0) { h.direction = 1; #if COMPUTE_WALL_TEXCOORDS == 1 h.textureCoord = wrap(UNITS_PER_SQUARE - currentPos.y,UNITS_PER_SQUARE); #endif } else if (no.y < 0) { h.direction = 2; #if COMPUTE_WALL_TEXCOORDS == 1 h.textureCoord = wrap(UNITS_PER_SQUARE - currentPos.x,UNITS_PER_SQUARE); #endif } else { h.direction = 3; #if COMPUTE_WALL_TEXCOORDS == 1 h.textureCoord = wrap(currentPos.y,UNITS_PER_SQUARE); #endif } #if COMPUTE_WALL_TEXCOORDS == 1 if (_rollFunction != 0) h.doorRoll = _rollFunction(currentSquare.x,currentSquare.y); #endif hitResults[*hitResultsLen] = h; *hitResultsLen += 1; squareType = currentType; if (*hitResultsLen >= constraints.maxHits) break; } ray.start.x = wrap(currentPos.x,UNITS_PER_SQUARE); ray.start.y = wrap(currentPos.y,UNITS_PER_SQUARE); castRaySquare(&ray,&no,&co); currentSquare.x += no.x; currentSquare.y += no.y; // offset into the next cell currentPos.x += co.x; currentPos.y += co.y; } } HitResult castRay(Ray ray, ArrayFunction arrayFunc) { profileCall(castRay); HitResult result; uint16_t len; RayConstraints c; c.maxSteps = 1000; c.maxHits = 1; castRayMultiHit(ray,arrayFunc,0,&result,&len,c); if (len == 0) result.distance = -1; return result; } void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc, ArrayFunction typeFunction, ColumnFunction columnFunc, RayConstraints constraints) { Vector2D dir1 = angleToDirection(cam.direction - HORIZONTAL_FOV_HALF); Vector2D dir2 = angleToDirection(cam.direction + HORIZONTAL_FOV_HALF); Unit dX = dir2.x - dir1.x; Unit dY = dir2.y - dir1.y; HitResult hits[constraints.maxHits]; uint16_t hitCount; Ray r; r.start = cam.position; Unit currentDX = 0; Unit currentDY = 0; for (int16_t i = 0; i < cam.resolution.x; ++i) { r.direction.x = dir1.x + currentDX / cam.resolution.x; r.direction.y = dir1.y + currentDY / cam.resolution.x; castRayMultiHit(r,arrayFunc,typeFunction,hits,&hitCount,constraints); columnFunc(hits,hitCount,i,r); currentDX += dX; currentDY += dY; } } /** Helper function that determines intersection with both ceiling and floor. */ Unit _floorCeilFunction(int16_t x, int16_t y) { // TODO: adjust also for RAYCAST_TINY Unit f = _floorFunction(x,y); if (_ceilFunction == 0) return f; Unit c = _ceilFunction(x,y); #ifndef RAYCAST_TINY return ((f & 0x0000ffff) << 16) | (c & 0x0000ffff); #else return ((f & 0x00ff) << 8) | (c & 0x00ff); #endif } Unit _floorHeightNotZeroFunction(int16_t x, int16_t y) { return _floorFunction(x,y) == 0 ? 0 : (x & 0x00FF) | ((y & 0x00FF) << 8); // ^ this makes collisions between all squares - needed for rolling doors } Unit adjustDistance(Unit distance, Camera *camera, Ray *ray) { /* FIXME/TODO: The adjusted (=orthogonal, camera-space) distance could possibly be computed more efficiently by not computing Euclidean distance at all, but rather compute the distance of the collision point from the projection plane (line). */ Unit result = (distance * vectorsAngleCos(angleToDirection(camera->direction),ray->direction)) / UNITS_PER_SQUARE; return result == 0 ? 1 : result; // ^ prevent division by zero } void _columnFunction(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray) { // last written Y position, can never go backwards Unit fPosY = _camera.resolution.y; Unit cPosY = -1; // world coordinates Unit fZ1World = _startFloorHeight; Unit cZ1World = _startCeilHeight; PixelInfo p; p.position.x = x; p.texCoords.x = 0; p.texCoords.y = 0; Unit i; // we'll be simulatenously drawing the floor and the ceiling now for (Unit j = 0; j <= hitCount; ++j) { // ^ = add extra iteration for horizon plane int8_t drawingHorizon = j == hitCount; HitResult hit; Unit distance; Unit fWallHeight = 0, cWallHeight = 0; Unit fZ2World = 0, cZ2World = 0; Unit fZ1Screen = 0, cZ1Screen = 0; Unit fZ2Screen = 0, cZ2Screen = 0; if (!drawingHorizon) { hit = hits[j]; distance = adjustDistance(hit.distance,&_camera,&ray); fWallHeight = _floorFunction(hit.square.x,hit.square.y); fZ2World = fWallHeight - _camera.height; fZ1Screen = _middleRow - perspectiveScale( (fZ1World * _camera.resolution.y) / UNITS_PER_SQUARE,distance); fZ2Screen = _middleRow - perspectiveScale( (fZ2World * _camera.resolution.y) / UNITS_PER_SQUARE,distance); if (_ceilFunction != 0) { cWallHeight = _ceilFunction(hit.square.x,hit.square.y); cZ2World = cWallHeight - _camera.height; cZ1Screen = _middleRow - perspectiveScale( (cZ1World * _camera.resolution.y) / UNITS_PER_SQUARE,distance); cZ2Screen = _middleRow - perspectiveScale( (cZ2World * _camera.resolution.y) / UNITS_PER_SQUARE,distance); } } else { fZ1Screen = _middleRow; cZ1Screen = _middleRow + 1; } Unit limit; #define VERTICAL_DEPTH_MULTIPLY 2 #define drawHorizontal(pref,l1,l2,comp,inc)\ p.depth += absVal(pref##Z1World) * VERTICAL_DEPTH_MULTIPLY;\ limit = clamp(pref##Z1Screen,l1,l2);\ for (i = pref##PosY inc 1; i comp##= limit; inc##inc i)\ {\ p.position.y = i;\ p.depth += _horizontalDepthStep;\ PIXEL_FUNCTION(&p);\ }\ if (pref##PosY comp limit)\ pref##PosY = limit; p.isWall = 0; p.isHorizon = drawingHorizon; // draw floor until wall p.isFloor = 1; p.depth = (_fHorizontalDepthStart - fPosY) * _horizontalDepthStep; drawHorizontal(f,cPosY + 1,_camera.resolution.y,>,-) // ^ purposfully allow outside screen bounds here if (_ceilFunction != 0 || drawingHorizon) { // draw ceiling until wall p.isFloor = 0; p.depth = (cPosY - _cHorizontalDepthStart) * _horizontalDepthStep; drawHorizontal(c,-1,fPosY - 1,<,+) // ^ purposfully allow outside screen bounds here } #undef drawHorizontal #undef VERTICAL_DEPTH_MULTIPLY if (!drawingHorizon) // don't draw walls for horizon plane { #define drawVertical(pref,l1,l2,comp,inc)\ {\ limit = clamp(pref##Z2Screen,l1,l2);\ Unit wallLength = pref##Z2Screen - pref##Z1Screen - 1;\ wallLength = wallLength != 0 ? wallLength : 1;\ Unit wallPosition = absVal(pref##Z1Screen - pref##PosY) inc (-1);\ Unit coordStep = COMPUTE_WALL_TEXCOORDS ? \ UNITS_PER_SQUARE / wallLength : 1;\ p.texCoords.y = COMPUTE_WALL_TEXCOORDS ?\ wallPosition * coordStep : 0;\ if (coordStep < MIN_TEXTURE_STEP) /* two versions of the loop */ \ for (i = pref##PosY inc 1; i comp##= limit; inc##inc i)\ { /* more expensive texture coord computing */\ p.position.y = i;\ p.hit = hit;\ if (COMPUTE_WALL_TEXCOORDS == 1)\ {\ p.texCoords.x = hit.textureCoord;\ p.texCoords.y = (wallPosition * UNITS_PER_SQUARE)/wallLength;\ }\ wallPosition++;\ PIXEL_FUNCTION(&p);\ }\ else\ for (i = pref##PosY inc 1; i comp##= limit; inc##inc i)\ { /* cheaper texture coord computing */\ p.position.y = i;\ p.hit = hit;\ if (COMPUTE_WALL_TEXCOORDS == 1)\ {\ p.texCoords.x = hit.textureCoord;\ p.texCoords.y += coordStep;\ }\ PIXEL_FUNCTION(&p);\ }\ if (pref##PosY comp limit)\ pref##PosY = limit;\ pref##Z1World = pref##Z2World; /* for the next iteration */\ } p.isWall = 1; p.depth = distance; p.isFloor = 1; // draw floor wall if (fPosY > 0) // still pixels left? { p.isFloor = 1; drawVertical(f,cPosY + 1,_camera.resolution.y,>,-) } // ^ purposfully allow outside screen bounds here // draw ceiling wall if (_ceilFunction != 0 && cPosY < _camResYLimit) // still pixels left? { p.isFloor = 0; drawVertical(c,-1,fPosY - 1,<,+) } // ^ puposfully allow outside screen bounds here #undef drawVertical } } } void _columnFunctionSimple(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray) { int16_t y = 0; int16_t wallHeightScreen = 0; int16_t coordHelper = 0; int16_t wallStart = _middleRow; int16_t wallEnd = _middleRow; int16_t heightOffset = 0; Unit dist = 1; PixelInfo p; p.position.x = x; if (hitCount > 0) { HitResult hit = hits[0]; uint8_t goOn = 1; if (_rollFunction != 0 && COMPUTE_WALL_TEXCOORDS == 1) { if (hit.arrayValue == 0) { // standing inside door square, looking out => move to the next hit if (hitCount > 1) hit = hits[1]; else goOn = 0; } else { // normal hit, check the door roll int8_t unrolled = hit.doorRoll >= 0 ? hit.doorRoll > hit.textureCoord : hit.textureCoord > UNITS_PER_SQUARE + hit.doorRoll; if (unrolled) { goOn = 0; if (hitCount > 1) /* should probably always be true (hit on square exit) */ { if (hit.direction % 2 != hits[1].direction % 2) { // hit on the inner side hit = hits[1]; goOn = 1; } else if (hitCount > 2) { // hit on the opposite side hit = hits[2]; goOn = 1; } } } } } p.hit = hit; if (goOn) { dist = adjustDistance(hit.distance,&_camera,&ray); int16_t wallHeightWorld = _floorFunction(hit.square.x,hit.square.y); wallHeightScreen = perspectiveScale((wallHeightWorld * _camera.resolution.y) / UNITS_PER_SQUARE,dist); int16_t normalizedWallHeight = wallHeightWorld != 0 ? ((UNITS_PER_SQUARE * wallHeightScreen) / wallHeightWorld) : 0; heightOffset = perspectiveScale(_cameraHeightScreen,dist); wallStart = _middleRow - wallHeightScreen + heightOffset + normalizedWallHeight; coordHelper = -1 * wallStart; coordHelper = coordHelper >= 0 ? coordHelper : 0; wallEnd = clamp(wallStart + wallHeightScreen,0,_camResYLimit); wallStart = clamp(wallStart,0,_camResYLimit); } } // draw ceiling p.isWall = 0; p.isFloor = 0; p.isHorizon = 1; p.depth = 1; while (y < wallStart) { p.position.y = y; PIXEL_FUNCTION(&p); ++y; p.depth += _horizontalDepthStep; } // draw wall p.isWall = 1; p.isFloor = 1; p.depth = dist; #if ROLL_TEXTURE_COORDS == 1 && COMPUTE_WALL_TEXCOORDS == 1 p.hit.textureCoord -= p.hit.doorRoll; #endif Unit coordStep = 1; #if COMPUTE_WALL_TEXCOORDS == 1 p.texCoords.x = p.hit.textureCoord; coordStep = UNITS_PER_SQUARE / wallHeightScreen; p.texCoords.y = coordStep * coordHelper; #endif if (coordStep < MIN_TEXTURE_STEP) /* instead of branching inside a critical loop, have two versions of the loop and branch early (here) */ { while (y < wallEnd) { // more expensive and accurate version of texture coords computation p.position.y = y; #if COMPUTE_WALL_TEXCOORDS == 1 p.texCoords.y = (UNITS_PER_SQUARE * coordHelper) / wallHeightScreen; #endif PIXEL_FUNCTION(&p); ++coordHelper; ++y; } } else { while (y < wallEnd) { // cheaper texture coord computation p.position.y = y; PIXEL_FUNCTION(&p); #if COMPUTE_WALL_TEXCOORDS == 1 p.texCoords.y += coordStep; #endif ++y; } } // draw floor p.isWall = 0; p.depth = (_camera.resolution.y - y) * _horizontalDepthStep + 1; /* WIP: floor textures Unit dx = p.hit.position.x - _camera.position.x; Unit dy = p.hit.position.y - _camera.position.y; Unit pixPos = y - _middleRow; */ while (y < _camera.resolution.y) { /* WIP: floor textures Unit d = perspectiveScaleInverse(_camera.height,pixPos); d = (d * UNITS_PER_SQUARE) / vectorsAngleCos(angleToDirection(_camera.direction),ray.direction); p.texCoords.x = _camera.position.x + ((d * dx) / p.hit.distance) / 32; p.texCoords.y = _camera.position.y + ((d * dy) / p.hit.distance) / 32; pixPos++; */ p.position.y = y; PIXEL_FUNCTION(&p); ++y; p.depth -= _horizontalDepthStep; if (p.depth < 0) // just in case p.depth = 0; } } void render(Camera cam, ArrayFunction floorHeightFunc, ArrayFunction ceilingHeightFunc, ArrayFunction typeFunction, RayConstraints constraints) { _floorFunction = floorHeightFunc; _ceilFunction = ceilingHeightFunc; _camera = cam; _camResYLimit = cam.resolution.y - 1; int16_t halfResY = cam.resolution.y / 2; _middleRow = halfResY + cam.shear; _fHorizontalDepthStart = _middleRow + halfResY; _cHorizontalDepthStart = _middleRow - halfResY; _startFloorHeight = floorHeightFunc( divRoundDown(cam.position.x,UNITS_PER_SQUARE), divRoundDown(cam.position.y,UNITS_PER_SQUARE)) -1 * cam.height; _startCeilHeight = ceilingHeightFunc != 0 ? ceilingHeightFunc( divRoundDown(cam.position.x,UNITS_PER_SQUARE), divRoundDown(cam.position.y,UNITS_PER_SQUARE)) -1 * cam.height : UNIT_INFINITY; // TODO _horizontalDepthStep = (12 * UNITS_PER_SQUARE) / cam.resolution.y; castRaysMultiHit(cam,_floorCeilFunction,typeFunction, _columnFunction,constraints); } void renderSimple(Camera cam, ArrayFunction floorHeightFunc, ArrayFunction typeFunc, ArrayFunction rollFunc, RayConstraints constraints) { _floorFunction = floorHeightFunc; _camera = cam; _camResYLimit = cam.resolution.y - 1; _middleRow = cam.resolution.y / 2; _rollFunction = rollFunc; _cameraHeightScreen = (_camera.resolution.y * (_camera.height - UNITS_PER_SQUARE)) / UNITS_PER_SQUARE; // TODO _horizontalDepthStep = (12 * UNITS_PER_SQUARE) / cam.resolution.y; constraints.maxHits = _rollFunction == 0 ? 1 : // no door => 1 hit is enough 3; // for correctly rendering rolling doors we'll need 3 hits (NOT 2) castRaysMultiHit(cam,_floorHeightNotZeroFunction,typeFunc, _columnFunctionSimple, constraints); } Vector2D normalize(Vector2D v) { profileCall(normalize); Vector2D result; Unit l = len(v); l = l != 0 ? l : 1; result.x = (v.x * UNITS_PER_SQUARE) / l; result.y = (v.y * UNITS_PER_SQUARE) / l; return result; } Unit vectorsAngleCos(Vector2D v1, Vector2D v2) { profileCall(vectorsAngleCos); v1 = normalize(v1); v2 = normalize(v2); return (v1.x * v2.x + v1.y * v2.y) / UNITS_PER_SQUARE; } PixelInfo mapToScreen(Vector2D worldPosition, Unit height, Camera camera) { // TODO: precompute some stuff that's constant in the frame PixelInfo result; Unit d = dist(worldPosition,camera.position); Vector2D toPoint; toPoint.x = worldPosition.x - camera.position.x; toPoint.y = worldPosition.y - camera.position.y; Vector2D cameraDir = angleToDirection(camera.direction); result.depth = // adjusted distance (d * vectorsAngleCos(cameraDir,toPoint)) / UNITS_PER_SQUARE; result.position.y = camera.resolution.y / 2 - (camera.resolution.y * perspectiveScale(height - camera.height,result.depth)) / UNITS_PER_SQUARE + camera.shear; Unit middleColumn = camera.resolution.x / 2; Unit a = sqrtInt(d * d - result.depth * result.depth); Ray r; r.start = camera.position; r.direction = cameraDir; if (!pointIsLeftOfRay(worldPosition,r)) a *= -1; Unit cos = cosInt(HORIZONTAL_FOV_HALF); Unit b = (result.depth * sinInt(HORIZONTAL_FOV_HALF)) / (cos == 0 ? 1 : cos); // sin/cos = tan result.position.x = (a * middleColumn) / (b == 0 ? 1 : b); result.position.x = middleColumn - result.position.x; return result; } Unit degreesToUnitsAngle(int16_t degrees) { return (degrees * UNITS_PER_SQUARE) / 360; } Unit perspectiveScale(Unit originalSize, Unit distance) { profileCall(perspectiveScale); return distance != 0 ? (originalSize * UNITS_PER_SQUARE) / ((VERTICAL_FOV * 2 * distance) / UNITS_PER_SQUARE) : 0; } Unit perspectiveScaleInverse(Unit originalSize, Unit scaledSize) { return scaledSize != 0 ? (originalSize * UNITS_PER_SQUARE) / ((VERTICAL_FOV * 2 * scaledSize) / UNITS_PER_SQUARE) : 0; } void moveCameraWithCollision(Camera *camera, Vector2D planeOffset, Unit heightOffset, ArrayFunction floorHeightFunc, ArrayFunction ceilingHeightFunc, int8_t computeHeight, int8_t force) { // TODO: have the cam coll parameters precomputed as macros? => faster int8_t movesInPlane = planeOffset.x != 0 || planeOffset.y != 0; int16_t xSquareNew, ySquareNew; if (movesInPlane || force) { Vector2D corner; // BBox corner in the movement direction Vector2D cornerNew; int16_t xDir = planeOffset.x > 0 ? 1 : (planeOffset.x < 0 ? -1 : 0); int16_t yDir = planeOffset.y > 0 ? 1 : (planeOffset.y < 0 ? -1 : 0); corner.x = camera->position.x + xDir * CAMERA_COLL_RADIUS; corner.y = camera->position.y + yDir * CAMERA_COLL_RADIUS; int16_t xSquare = divRoundDown(corner.x,UNITS_PER_SQUARE); int16_t ySquare = divRoundDown(corner.y,UNITS_PER_SQUARE); cornerNew.x = corner.x + planeOffset.x; cornerNew.y = corner.y + planeOffset.y; xSquareNew = divRoundDown(cornerNew.x,UNITS_PER_SQUARE); ySquareNew = divRoundDown(cornerNew.y,UNITS_PER_SQUARE); Unit bottomLimit = camera->height - CAMERA_COLL_HEIGHT_BELOW + CAMERA_COLL_STEP_HEIGHT; Unit topLimit = camera->height + CAMERA_COLL_HEIGHT_ABOVE; // checks a single square for collision against the camera #define collCheck(dir,s1,s2)\ if (computeHeight)\ {\ Unit height = floorHeightFunc(s1,s2);\ if (height > bottomLimit)\ dir##Collides = 1;\ else if (ceilingHeightFunc != 0)\ {\ height = ceilingHeightFunc(s1,s2);\ if (height < topLimit)\ dir##Collides = 1;\ }\ }\ else\ dir##Collides = floorHeightFunc(s1,s2) > CAMERA_COLL_STEP_HEIGHT; // check a collision against non-diagonal square #define collCheckOrtho(dir,dir2,s1,s2,x)\ if (dir##SquareNew != dir##Square)\ {\ collCheck(dir,s1,s2)\ }\ if (!dir##Collides)\ { /* now also check for coll on the neighbouring square */ \ int16_t dir2##Square2 = divRoundDown(corner.dir2 - dir2##Dir *\ CAMERA_COLL_RADIUS * 2,UNITS_PER_SQUARE);\ if (dir2##Square2 != dir2##Square)\ {\ if (x)\ collCheck(dir,dir##SquareNew,dir2##Square2)\ else\ collCheck(dir,dir2##Square2,dir##SquareNew)\ }\ } int8_t xCollides = 0; collCheckOrtho(x,y,xSquareNew,ySquare,1) int8_t yCollides = 0; collCheckOrtho(y,x,xSquare,ySquareNew,0) #define collHandle(dir)\ if (dir##Collides)\ cornerNew.dir = (dir##Square) * UNITS_PER_SQUARE + UNITS_PER_SQUARE / 2\ + dir##Dir * (UNITS_PER_SQUARE / 2) - dir##Dir;\ if (!xCollides && !yCollides) /* if non-diagonal collision happend, corner collision can't happen */ { if (xSquare != xSquareNew && ySquare != ySquareNew) // corner? { int8_t xyCollides = 0; collCheck(xy,xSquareNew,ySquareNew) if (xyCollides) { // normally should slide, but let's KISS cornerNew = corner; } } } collHandle(x) collHandle(y) #undef collCheck #undef collHandle camera->position.x = cornerNew.x - xDir * CAMERA_COLL_RADIUS; camera->position.y = cornerNew.y - yDir * CAMERA_COLL_RADIUS; } if (computeHeight && (movesInPlane || heightOffset != 0 || force)) { camera->height += heightOffset; int16_t xSquare1 = divRoundDown(camera->position.x - CAMERA_COLL_RADIUS,UNITS_PER_SQUARE); int16_t xSquare2 = divRoundDown(camera->position.x + CAMERA_COLL_RADIUS,UNITS_PER_SQUARE); int16_t ySquare1 = divRoundDown(camera->position.y - CAMERA_COLL_RADIUS,UNITS_PER_SQUARE); int16_t ySquare2 = divRoundDown(camera->position.y + CAMERA_COLL_RADIUS,UNITS_PER_SQUARE); Unit bottomLimit = floorHeightFunc(xSquare1,ySquare1); Unit topLimit = ceilingHeightFunc != 0 ? ceilingHeightFunc(xSquare1,ySquare1) : UNIT_INFINITY; Unit height; #define checkSquares(s1,s2)\ {\ height = floorHeightFunc(xSquare##s1,ySquare##s2);\ bottomLimit = bottomLimit < height ? height : bottomLimit;\ height = ceilingHeightFunc != 0 ?\ ceilingHeightFunc(xSquare##s1,ySquare##s2) : UNIT_INFINITY;\ topLimit = topLimit > height ? height : topLimit;\ } if (xSquare2 != xSquare1) checkSquares(2,1) if (ySquare2 != ySquare1) checkSquares(1,2) if (xSquare2 != xSquare1 && ySquare2 != ySquare1) checkSquares(2,2) camera->height = clamp(camera->height, bottomLimit + CAMERA_COLL_HEIGHT_BELOW, topLimit - CAMERA_COLL_HEIGHT_ABOVE); #undef checkSquares } } void initCamera(Camera *camera) { camera->position.x = 0; camera->position.y = 0; camera->direction = 0; camera->resolution.x = 20; camera->resolution.y = 15; camera->shear = 0; camera->height = UNITS_PER_SQUARE; } void initRayConstraints(RayConstraints *constraints) { constraints->maxHits = 1; constraints->maxSteps = 20; } #endif