1
0
Fork 0
mirror of https://git.coom.tech/drummyfish/raycastlib.git synced 2024-11-21 20:29:59 +01:00
raycastlib/raycastlib.h
2018-09-02 23:26:02 +02:00

757 lines
17 KiB
C

#ifndef RAYCASTLIB_H
#define RAYCASTLIB_H
/**
raycastlib - Small C header-only raycasting library for embedded and low
performance computers, such as Arduino. Only uses integer math and stdint
standard library.
author: Miloslav "drummyfish" Ciz
license: CC0
- Game field's bottom left corner is at [0,0].
- X axis goes right.
- Y axis goes up.
- Each game square is UNITS_PER_SQUARE * UNITS_PER_SQUARE.
- Angles are in Units, 0 means pointing right (x+) and positively rotates
clockwise, a full angle has UNITS_PER_SQUARE Units.
*/
#include <stdio.h>
#include <stdint.h>
#ifndef RAYCAST_TINY
#define UNITS_PER_SQUARE 1024 ///< No. of Units in a side of a spatial square.
typedef int32_t Unit; /**< Smallest spatial unit, there is UNITS_PER_SQUARE
units in a square's length. This effectively
serves the purpose of a fixed-point arithmetic. */
typedef int32_t int_maybe32_t;
typedef uint32_t uint_maybe32_t;
#else
#define UNITS_PER_SQUARE 64
typedef int16_t Unit;
typedef int16_t int_maybe32_t;
typedef uint16_t uint_maybe32_t;
#endif
#define logVector2D(v)\
printf("[%d,%d]\n",v.x,v.y);
#define logRay(r){\
printf("ray:\n");\
printf(" start: ");\
logVector2D(r.start);\
printf(" dir: ");\
logVector2D(r.direction);}\
#define logHitResult(h){\
printf("hit:\n");\
printf(" sqaure: ");\
logVector2D(h.square);\
printf(" pos: ");\
logVector2D(h.position);\
printf(" dist: %d\n", h.distance);\
printf(" texcoord: %d\n", h.textureCoord);}\
/// Position in 2D space.
typedef struct
{
int_maybe32_t y;
int_maybe32_t x;
} Vector2D;
typedef struct
{
Vector2D start;
Vector2D direction;
} Ray;
typedef struct
{
Vector2D square; ///< Collided square coordinates.
Vector2D position; ///< Exact collision position in Units.
Unit distance; /**< Euclidean distance to the hit position, or -1 if
no collision happened. */
Unit textureCoord; /**< Normalized (0 to UNITS_PER_SQUARE - 1) texture
coordinate. */
uint8_t direction; ///< Direction of hit.
} HitResult;
typedef struct
{
Vector2D position;
Unit direction;
Vector2D resolution;
Unit fovAngle;
Unit height;
} Camera;
typedef struct
{
Vector2D position; ///< On-screen position.
int8_t isWall; ///< Whether the pixel is a wall or a floor(/ceiling).
Unit depth; ///< Corrected depth.
HitResult hit; ///< Corresponding ray hit.
} PixelInfo;
typedef struct
{
uint16_t maxHits;
uint16_t maxSteps;
} RayConstraints;
/**
Function used to retrieve the cells of the rendered scene. It should return
a "type" of given square as an integer (e.g. square height) - between squares
that return different numbers there is considered to be a collision.
*/
typedef Unit (*ArrayFunction)(int16_t x, int16_t y);
typedef void (*PixelFunction)(PixelInfo info);
typedef void
(*ColumnFunction)(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray);
/**
Simple-interface function to cast a single ray.
@return The first collision result.
*/
HitResult castRay(Ray ray, ArrayFunction arrayFunc);
/**
Casts a single ray and returns a list of collisions.
*/
void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, HitResult *hitResults,
uint16_t *hitResultsLen, RayConstraints constraints);
Vector2D angleToDirection(Unit angle);
Unit cosInt(Unit input);
Unit sinInt(Unit input);
/// Normalizes given vector to have UNITS_PER_SQUARE length.
Vector2D normalize(Vector2D v);
/// Computes a cos of an angle between two vectors.
Unit vectorsAngleCos(Vector2D v1, Vector2D v2);
uint16_t sqrtInt(uint_maybe32_t value);
Unit dist(Vector2D p1, Vector2D p2);
Unit len(Vector2D v);
/**
Converts an angle in whole degrees to an angle in Units that this library
uses.
*/
Unit degreesToUnitsAngle(int16_t degrees);
///< Computes the change in size of an object due to perspective.
Unit perspectiveScale(Unit originalSize, Unit distance, Unit fov);
/**
Casts rays for given camera view and for each hit calls a user provided
function.
*/
void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc,
ColumnFunction columnFunc, RayConstraints constraints);
void render(Camera cam, ArrayFunction arrayFunc, PixelFunction pixelFunc,
RayConstraints constraints);
//=============================================================================
// privates
#ifdef RAYCASTLIB_PROFILE
// function call counters for profiling
uint_maybe32_t profile_sqrtInt = 0;
uint_maybe32_t profile_clamp = 0;
uint_maybe32_t profile_cosInt = 0;
uint_maybe32_t profile_angleToDirection = 0;
uint_maybe32_t profile_dist = 0;
uint_maybe32_t profile_len = 0;
uint_maybe32_t profile_pointIsLeftOfRay = 0;
uint_maybe32_t profile_castRaySquare = 0;
uint_maybe32_t profile_castRayMultiHit = 0;
uint_maybe32_t profile_castRay = 0;
uint16_t profile_normalize = 0;
uint16_t profile_vectorsAngleCos = 0;
#define profileCall(c) profile_##c += 1
#define printProfile() {\
printf("profile:\n");\
printf(" sqrtInt: %d\n",profile_sqrtInt);\
printf(" clamp: %d\n",profile_clamp);\
printf(" cosInt: %d\n",profile_cosInt);\
printf(" angleToDirection: %d\n",profile_angleToDirection);\
printf(" dist: %d\n",profile_dist);\
printf(" len: %d\n",profile_len);\
printf(" pointIsLeftOfRay: %d\n",profile_pointIsLeftOfRay);\
printf(" castRaySquare: %d\n",profile_castRaySquare);\
printf(" castRayMultiHit : %d\n",profile_castRayMultiHit);\
printf(" castRay: %d\n",profile_castRay);\
printf(" normalize: %d\n",profile_normalize);\
printf(" vectorsAngleCos: %d\n",profile_vectorsAngleCos); }
#else
#define profileCall(c)
#endif
Unit clamp(Unit value, Unit valueMin, Unit valueMax)
{
profileCall(clamp);
if (value < valueMin)
return valueMin;
if (value > valueMax)
return valueMax;
return value;
}
// Bhaskara's cosine approximation formula
#define trigHelper(x) (((Unit) UNITS_PER_SQUARE) *\
(UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 - 4 * (x) * (x)) /\
(UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 + (x) * (x)))
Unit cosInt(Unit input)
{
profileCall(cosInt);
input = input % UNITS_PER_SQUARE;
if (input < 0)
input = UNITS_PER_SQUARE + input;
if (input < UNITS_PER_SQUARE / 4)
return trigHelper(input);
else if (input < UNITS_PER_SQUARE / 2)
return -1 * trigHelper(UNITS_PER_SQUARE / 2 - input);
else if (input < 3 * UNITS_PER_SQUARE / 4)
return -1 * trigHelper(input - UNITS_PER_SQUARE / 2);
else
return trigHelper(UNITS_PER_SQUARE - input);
}
#undef trigHelper
Unit sinInt(Unit input)
{
return cosInt(input - UNITS_PER_SQUARE / 4);
}
Vector2D angleToDirection(Unit angle)
{
profileCall(angleToDirection);
Vector2D result;
result.x = cosInt(angle);
result.y = -1 * sinInt(angle);
return result;
}
uint16_t sqrtInt(uint_maybe32_t value)
{
profileCall(sqrtInt);
uint_maybe32_t result = 0;
uint_maybe32_t a = value;
#ifdef RAYCAST_TINY
uint_maybe32_t b = 1u << 14;
#else
uint_maybe32_t b = 1u << 30;
#endif
while (b > a)
b >>= 2;
while (b != 0)
{
if (a >= result + b)
{
a -= result + b;
result = result + 2 * b;
}
b >>= 2;
result >>= 1;
}
return result;
}
Unit dist(Vector2D p1, Vector2D p2)
{
profileCall(dist);
int_maybe32_t dx = p2.x - p1.x;
int_maybe32_t dy = p2.y - p1.y;
dx = dx * dx;
dy = dy * dy;
return sqrtInt((uint_maybe32_t) (dx + dy));
}
Unit len(Vector2D v)
{
profileCall(len);
v.x *= v.x;
v.y *= v.y;
return sqrtInt(((uint_maybe32_t) v.x) + ((uint_maybe32_t) v.y));
}
int8_t pointIsLeftOfRay(Vector2D point, Ray ray)
{
profileCall(pointIsLeftOfRay);
Unit dX = point.x - ray.start.x;
Unit dY = point.y - ray.start.y;
return (ray.direction.x * dY - ray.direction.y * dX) > 0;
// ^ Z component of cross-product
}
/**
Casts a ray within a single square, to collide with the square borders.
*/
void castRaySquare(Ray localRay, Vector2D *nextCellOff, Vector2D *collOff)
{
profileCall(castRaySquare);
nextCellOff->x = 0;
nextCellOff->y = 0;
Ray criticalLine = localRay;
#define helper(c1,c2,n)\
{\
nextCellOff->c1 = n;\
collOff->c1 = criticalLine.start.c1 - localRay.start.c1;\
collOff->c2 = \
(((int_maybe32_t) collOff->c1) * localRay.direction.c2) /\
((localRay.direction.c1 == 0) ? 1 : localRay.direction.c1);\
}
#define helper2(n1,n2,c)\
if (pointIsLeftOfRay(localRay.start,criticalLine) == c)\
helper(y,x,n1)\
else\
helper(x,y,n2)
if (localRay.direction.x > 0)
{
criticalLine.start.x = UNITS_PER_SQUARE - 1;
if (localRay.direction.y > 0)
{
// top right
criticalLine.start.y = UNITS_PER_SQUARE - 1;
helper2(1,1,1)
}
else
{
// bottom right
criticalLine.start.y = 0;
helper2(-1,1,0)
}
}
else
{
criticalLine.start.x = 0;
if (localRay.direction.y > 0)
{
// top left
criticalLine.start.y = UNITS_PER_SQUARE - 1;
helper2(1,-1,0)
}
else
{
// bottom left
criticalLine.start.y = 0;
helper2(-1,-1,1)
}
}
#undef helper2
#undef helper
collOff->x += nextCellOff->x;
collOff->y += nextCellOff->y;
}
void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, HitResult *hitResults,
uint16_t *hitResultsLen, RayConstraints constraints)
{
profileCall(castRayMultiHit);
Vector2D initialPos = ray.start;
Vector2D currentPos = ray.start;
Vector2D currentSquare;
currentSquare.x = ray.start.x / UNITS_PER_SQUARE;
currentSquare.y = ray.start.y / UNITS_PER_SQUARE;
if (ray.start.x < 0) // round down, not toward zero
currentSquare.x--;
if (ray.start.y < 0)
currentSquare.y--;
*hitResultsLen = 0;
int16_t squareType = arrayFunc(currentSquare.x,currentSquare.y);
Vector2D no, co; // next cell offset, collision offset
no.x = 0; // just to supress a warning
no.y = 0;
for (uint16_t i = 0; i < constraints.maxSteps; ++i)
{
int16_t currentType = arrayFunc(currentSquare.x,currentSquare.y);
if (currentType != squareType)
{
// collision
HitResult h;
h.position = currentPos;
h.square = currentSquare;
h.distance = dist(initialPos,currentPos);
if (no.y > 0)
h.direction = 0;
else if (no.x > 0)
h.direction = 1;
else if (no.y < 0)
h.direction = 2;
else
h.direction = 3;
hitResults[*hitResultsLen] = h;
*hitResultsLen += 1;
squareType = currentType;
if (*hitResultsLen >= constraints.maxHits)
break;
}
ray.start.x = currentPos.x < 0 ?
(UNITS_PER_SQUARE + currentPos.x % UNITS_PER_SQUARE - 1) :
(currentPos.x % UNITS_PER_SQUARE);
ray.start.y = currentPos.y < 0 ?
(UNITS_PER_SQUARE + currentPos.y % UNITS_PER_SQUARE - 1) :
(currentPos.y % UNITS_PER_SQUARE);
castRaySquare(ray,&no,&co);
currentSquare.x += no.x;
currentSquare.y += no.y;
// offset into the next cell
currentPos.x += co.x;
currentPos.y += co.y;
}
}
HitResult castRay(Ray ray, ArrayFunction arrayFunc)
{
profileCall(castRay);
HitResult result;
uint16_t len;
RayConstraints c;
c.maxSteps = 1000;
c.maxHits = 1;
castRayMultiHit(ray,arrayFunc,&result,&len,c);
if (len == 0)
result.distance = -1;
return result;
}
void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc,
ColumnFunction columnFunc, RayConstraints constraints)
{
uint16_t fovHalf = cam.fovAngle / 2;
Vector2D dir1 = angleToDirection(cam.direction - fovHalf);
Vector2D dir2 = angleToDirection(cam.direction + fovHalf);
Unit dX = dir2.x - dir1.x;
Unit dY = dir2.y - dir1.y;
HitResult hits[constraints.maxHits];
Ray rays[constraints.maxHits];
uint16_t hitCount;
Ray r;
r.start = cam.position;
for (uint16_t i = 0; i < cam.resolution.x; ++i)
{
r.direction.x = dir1.x + (dX * i) / cam.resolution.x;
r.direction.y = dir1.y + (dY * i) / cam.resolution.x;
castRayMultiHit(r,arrayFunc,hits,&hitCount,constraints);
columnFunc(hits,hitCount,i,r);
}
}
PixelFunction _pixelFunction = 0;
ArrayFunction _arrayFunction = 0;
Camera _camera;
Unit _floorDepthStep = 0;
Unit _startHeight = 0;
int_maybe32_t _camResYLimit = 0;
uint16_t _middleRow = 0;
void _columnFunction(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray)
{
int_maybe32_t y = _camResYLimit; // on screen y, will only go upwards
int_maybe32_t y2 = 0;
Unit worldZPrev = _startHeight;
Unit worldZPrevCeil = UNITS_PER_SQUARE * 5 + _startHeight;
PixelInfo p;
p.position.x = x;
for (uint_maybe32_t j = 0; j < hitCount; ++j)
{
HitResult hit = hits[j];
/* FIXME/TODO: The adjusted (=orthogonal, camera-space) distance could
possibly be computed more efficiently by not computing Euclidean
distance at all, but rather compute the distance of the collision
point from the projection plane (line). */
Unit dist = // adjusted distance
(hit.distance * vectorsAngleCos(angleToDirection(_camera.direction),
ray.direction)) / UNITS_PER_SQUARE;
dist = dist == 0 ? 1 : dist; // prevent division by zero
Unit wallHeight = _arrayFunction(hit.square.x,hit.square.y);
Unit worldZ2 = wallHeight - _camera.height;
Unit worldZ2Ceil = (UNITS_PER_SQUARE * 5 - wallHeight) - _camera.height;
int16_t z1Screen = _middleRow -
perspectiveScale(
(worldZPrev * _camera.resolution.y) / UNITS_PER_SQUARE,
dist,1);
z1Screen = clamp(z1Screen,0,_camResYLimit);
int16_t z1ScreenCeil = _middleRow -
perspectiveScale(
(worldZPrevCeil * _camera.resolution.y) / UNITS_PER_SQUARE,
dist,1);
z1ScreenCeil = clamp(z1ScreenCeil,0,_camResYLimit);
int16_t z2Screen = _middleRow -
perspectiveScale(
(worldZ2 * _camera.resolution.y) / UNITS_PER_SQUARE,
dist,1);
z2Screen = clamp(z2Screen,0,_camResYLimit);
int16_t z2ScreenCeil = _middleRow -
perspectiveScale(
(worldZ2Ceil * _camera.resolution.y) / UNITS_PER_SQUARE,
dist,1);
z2ScreenCeil = clamp(z2ScreenCeil,0,_camResYLimit);
Unit zTop = z1Screen < z2Screen ? z1Screen : z2Screen;
Unit zBottomCeil = z1ScreenCeil > z2ScreenCeil ? z1ScreenCeil : z2ScreenCeil;
if (zTop <= zBottomCeil)
zBottomCeil = zTop;
// draw floor until the wall
p.isWall = 0;
Unit floorCameraDiff = _camera.height - worldZPrev;
for (int_maybe32_t i = y; i > z1Screen; --i)
{
p.position.y = i;
p.depth = (_camera.resolution.y - i) * _floorDepthStep +
floorCameraDiff * 2;
_pixelFunction(p);
}
Unit ceilCameraDiff = worldZPrevCeil - _camera.height;
for (int_maybe32_t i = y2; i < z1ScreenCeil; ++i)
{
p.position.y = i;
p.depth = i * _floorDepthStep + ceilCameraDiff * 2;
_pixelFunction(p);
}
// draw the wall
p.isWall = 1;
p.depth = 1;
p.depth = dist;
for (int_maybe32_t i = z1Screen < y ? z1Screen : y; i > z2Screen; --i)
{
p.position.y = i;
p.hit = hit;
_pixelFunction(p);
}
for (int_maybe32_t i = z1ScreenCeil > y2 ? z1ScreenCeil : y2; i < z2ScreenCeil; ++i)
{
p.position.y = i;
p.hit = hit;
_pixelFunction(p);
}
y = y > zTop ? zTop : y;
worldZPrev = worldZ2;
y2 = y2 < zBottomCeil ? zBottomCeil : y2;
worldZPrevCeil = worldZ2Ceil;
if (y <= y2)
break;
}
// draw floor until horizon
p.isWall = 0;
Unit floorCameraDiff = _camera.height - worldZPrev;
uint16_t horizon = y <= y2 ? y : _middleRow;
for (int_maybe32_t i = y; i >= horizon; --i)
{
p.position.y = i;
p.depth = (_camera.resolution.y - i) * _floorDepthStep +
floorCameraDiff * 2;
_pixelFunction(p);
}
/*
Unit ceilCameraDiff = worldZPrevCeil - _camera.height;
for (int_maybe32_t i = y2; i < horizon; ++i)
{
p.position.y = i;
p.depth = (_camera.resolution.y - i) * _floorDepthStep +
floorCameraDiff * 2;
_pixelFunction(p);
}
*/
}
void render(Camera cam, ArrayFunction arrayFunc, PixelFunction pixelFunc,
RayConstraints constraints)
{
_pixelFunction = pixelFunc;
_arrayFunction = arrayFunc;
_camera = cam;
_camResYLimit = cam.resolution.y - 1;
_middleRow = cam.resolution.y / 2;
_startHeight = arrayFunc(
cam.position.x / UNITS_PER_SQUARE,
cam.position.y / UNITS_PER_SQUARE) -1 * cam.height;
// TODO
_floorDepthStep = (12 * UNITS_PER_SQUARE) / cam.resolution.y;
castRaysMultiHit(cam,arrayFunc,_columnFunction,constraints);
}
Vector2D normalize(Vector2D v)
{
profileCall(normalize);
Vector2D result;
Unit l = len(v);
l = l == 0 ? 1 : l;
result.x = (v.x * UNITS_PER_SQUARE) / l;
result.y = (v.y * UNITS_PER_SQUARE) / l;
return result;
}
Unit vectorsAngleCos(Vector2D v1, Vector2D v2)
{
profileCall(vectorsAngleCos);
v1 = normalize(v1);
v2 = normalize(v2);
return (v1.x * v2.x + v1.y * v2.y) / UNITS_PER_SQUARE;
}
Unit degreesToUnitsAngle(int16_t degrees)
{
return (degrees * UNITS_PER_SQUARE) / 360;
}
Unit perspectiveScale(Unit originalSize, Unit distance, Unit fov)
{
return (originalSize * UNITS_PER_SQUARE) / distance;
distance *= fov;
distance = distance == 0 ? 1 : distance; // prevent division by zero
return originalSize / distance;
}
#endif