mirror of
https://git.coom.tech/drummyfish/raycastlib.git
synced 2024-11-24 20:59:58 +01:00
744 lines
17 KiB
C
744 lines
17 KiB
C
#ifndef RAYCASTLIB_H
|
|
#define RAYCASTLIB_H
|
|
|
|
/**
|
|
raycastlib - Small C header-only raycasting library for embedded and low
|
|
performance computers, such as Arduino. Only uses integer math and stdint
|
|
standard library.
|
|
|
|
author: Miloslav "drummyfish" Ciz
|
|
license: CC0
|
|
|
|
- Game field's bottom left corner is at [0,0].
|
|
- X axis goes right.
|
|
- Y axis goes up.
|
|
- Each game square is UNITS_PER_SQUARE * UNITS_PER_SQUARE.
|
|
- Angles are in Units, 0 means pointing right (x+) and positively rotates
|
|
clockwise, a full angle has UNITS_PER_SQUARE Units.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
#ifndef RAYCAST_TINY
|
|
|
|
#define UNITS_PER_SQUARE 1024 ///< No. of Units in a side of a spatial square.
|
|
typedef int32_t Unit; /**< Smallest spatial unit, there is UNITS_PER_SQUARE
|
|
units in a square's length. This effectively
|
|
serves the purpose of a fixed-point arithmetic. */
|
|
typedef int32_t int_maybe32_t;
|
|
typedef uint32_t uint_maybe32_t;
|
|
|
|
#else
|
|
|
|
#define UNITS_PER_SQUARE 64
|
|
typedef int16_t Unit;
|
|
typedef int16_t int_maybe32_t;
|
|
typedef uint16_t uint_maybe32_t;
|
|
|
|
#endif
|
|
|
|
#define logVector2D(v)\
|
|
printf("[%d,%d]\n",v.x,v.y);
|
|
|
|
#define logRay(r){\
|
|
printf("ray:\n");\
|
|
printf(" start: ");\
|
|
logVector2D(r.start);\
|
|
printf(" dir: ");\
|
|
logVector2D(r.direction);}\
|
|
|
|
#define logHitResult(h){\
|
|
printf("hit:\n");\
|
|
printf(" sqaure: ");\
|
|
logVector2D(h.square);\
|
|
printf(" pos: ");\
|
|
logVector2D(h.position);\
|
|
printf(" dist: %d\n", h.distance);\
|
|
printf(" texcoord: %d\n", h.textureCoord);}\
|
|
|
|
/// Position in 2D space.
|
|
typedef struct
|
|
{
|
|
int_maybe32_t y;
|
|
int_maybe32_t x;
|
|
} Vector2D;
|
|
|
|
typedef struct
|
|
{
|
|
Vector2D start;
|
|
Vector2D direction;
|
|
} Ray;
|
|
|
|
typedef struct
|
|
{
|
|
Vector2D square; ///< Collided square coordinates.
|
|
Vector2D position; ///< Exact collision position in Units.
|
|
Unit distance; /**< Euclidean distance to the hit position, or -1 if
|
|
no collision happened. */
|
|
Unit textureCoord; /**< Normalized (0 to UNITS_PER_SQUARE - 1) texture
|
|
coordinate. */
|
|
uint8_t direction; ///< Direction of hit.
|
|
} HitResult;
|
|
|
|
typedef struct
|
|
{
|
|
Vector2D position;
|
|
Unit direction;
|
|
Vector2D resolution;
|
|
Unit fovAngle;
|
|
Unit height;
|
|
} Camera;
|
|
|
|
typedef struct
|
|
{
|
|
Vector2D position; ///< On-screen position.
|
|
int8_t isWall; ///< Whether the pixel is a wall or a floor(/ceiling).
|
|
Unit depth; ///< Corrected depth.
|
|
HitResult hit; ///< Corresponding ray hit.
|
|
} PixelInfo;
|
|
|
|
typedef struct
|
|
{
|
|
uint16_t maxHits;
|
|
uint16_t maxSteps;
|
|
} RayConstraints;
|
|
|
|
/**
|
|
Function used to retrieve the cells of the rendered scene. It should return
|
|
a "type" of given square as an integer (e.g. square height) - between squares
|
|
that return different numbers there is considered to be a collision.
|
|
*/
|
|
typedef Unit (*ArrayFunction)(int16_t x, int16_t y);
|
|
|
|
typedef void (*PixelFunction)(PixelInfo info);
|
|
|
|
typedef void
|
|
(*ColumnFunction)(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray);
|
|
|
|
/**
|
|
Simple-interface function to cast a single ray.
|
|
|
|
@return The first collision result.
|
|
*/
|
|
HitResult castRay(Ray ray, ArrayFunction arrayFunc);
|
|
|
|
/**
|
|
Casts a single ray and returns a list of collisions.
|
|
*/
|
|
void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, HitResult *hitResults,
|
|
uint16_t *hitResultsLen, RayConstraints constraints);
|
|
|
|
Vector2D angleToDirection(Unit angle);
|
|
Unit cosInt(Unit input);
|
|
Unit sinInt(Unit input);
|
|
|
|
/// Normalizes given vector to have UNITS_PER_SQUARE length.
|
|
Vector2D normalize(Vector2D v);
|
|
|
|
/// Computes a cos of an angle between two vectors.
|
|
Unit vectorsAngleCos(Vector2D v1, Vector2D v2);
|
|
|
|
uint16_t sqrtInt(uint_maybe32_t value);
|
|
Unit dist(Vector2D p1, Vector2D p2);
|
|
Unit len(Vector2D v);
|
|
|
|
/**
|
|
Converts an angle in whole degrees to an angle in Units that this library
|
|
uses.
|
|
*/
|
|
Unit degreesToUnitsAngle(int16_t degrees);
|
|
|
|
///< Computes the change in size of an object due to perspective.
|
|
Unit perspectiveScale(Unit originalSize, Unit distance, Unit fov);
|
|
|
|
/**
|
|
Casts rays for given camera view and for each hit calls a user provided
|
|
function.
|
|
*/
|
|
void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc,
|
|
ColumnFunction columnFunc, RayConstraints constraints);
|
|
|
|
void render(Camera cam, ArrayFunction arrayFunc, PixelFunction pixelFunc,
|
|
RayConstraints constraints);
|
|
|
|
//=============================================================================
|
|
// privates
|
|
|
|
#ifdef RAYCASTLIB_PROFILE
|
|
// function call counters for profiling
|
|
uint_maybe32_t profile_sqrtInt = 0;
|
|
uint_maybe32_t profile_clamp = 0;
|
|
uint_maybe32_t profile_cosInt = 0;
|
|
uint_maybe32_t profile_angleToDirection = 0;
|
|
uint_maybe32_t profile_dist = 0;
|
|
uint_maybe32_t profile_len = 0;
|
|
uint_maybe32_t profile_pointIsLeftOfRay = 0;
|
|
uint_maybe32_t profile_castRaySquare = 0;
|
|
uint_maybe32_t profile_castRayMultiHit = 0;
|
|
uint_maybe32_t profile_castRay = 0;
|
|
uint16_t profile_normalize = 0;
|
|
uint16_t profile_vectorsAngleCos = 0;
|
|
|
|
#define profileCall(c) profile_##c += 1
|
|
|
|
#define printProfile() {\
|
|
printf("profile:\n");\
|
|
printf(" sqrtInt: %d\n",profile_sqrtInt);\
|
|
printf(" clamp: %d\n",profile_clamp);\
|
|
printf(" cosInt: %d\n",profile_cosInt);\
|
|
printf(" angleToDirection: %d\n",profile_angleToDirection);\
|
|
printf(" dist: %d\n",profile_dist);\
|
|
printf(" len: %d\n",profile_len);\
|
|
printf(" pointIsLeftOfRay: %d\n",profile_pointIsLeftOfRay);\
|
|
printf(" castRaySquare: %d\n",profile_castRaySquare);\
|
|
printf(" castRayMultiHit : %d\n",profile_castRayMultiHit);\
|
|
printf(" castRay: %d\n",profile_castRay);\
|
|
printf(" normalize: %d\n",profile_normalize);\
|
|
printf(" vectorsAngleCos: %d\n",profile_vectorsAngleCos); }
|
|
#else
|
|
#define profileCall(c)
|
|
#endif
|
|
|
|
Unit clamp(Unit value, Unit valueMin, Unit valueMax)
|
|
{
|
|
profileCall(clamp);
|
|
|
|
if (value < valueMin)
|
|
return valueMin;
|
|
|
|
if (value > valueMax)
|
|
return valueMax;
|
|
|
|
return value;
|
|
}
|
|
|
|
inline Unit absVal(Unit value)
|
|
{
|
|
return value < 0 ? -1 * value : value;
|
|
}
|
|
|
|
// Bhaskara's cosine approximation formula
|
|
#define trigHelper(x) (((Unit) UNITS_PER_SQUARE) *\
|
|
(UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 - 4 * (x) * (x)) /\
|
|
(UNITS_PER_SQUARE / 2 * UNITS_PER_SQUARE / 2 + (x) * (x)))
|
|
|
|
Unit cosInt(Unit input)
|
|
{
|
|
profileCall(cosInt);
|
|
|
|
input = input % UNITS_PER_SQUARE;
|
|
|
|
if (input < 0)
|
|
input = UNITS_PER_SQUARE + input;
|
|
|
|
if (input < UNITS_PER_SQUARE / 4)
|
|
return trigHelper(input);
|
|
else if (input < UNITS_PER_SQUARE / 2)
|
|
return -1 * trigHelper(UNITS_PER_SQUARE / 2 - input);
|
|
else if (input < 3 * UNITS_PER_SQUARE / 4)
|
|
return -1 * trigHelper(input - UNITS_PER_SQUARE / 2);
|
|
else
|
|
return trigHelper(UNITS_PER_SQUARE - input);
|
|
}
|
|
|
|
#undef trigHelper
|
|
|
|
Unit sinInt(Unit input)
|
|
{
|
|
return cosInt(input - UNITS_PER_SQUARE / 4);
|
|
}
|
|
|
|
Vector2D angleToDirection(Unit angle)
|
|
{
|
|
profileCall(angleToDirection);
|
|
|
|
Vector2D result;
|
|
|
|
result.x = cosInt(angle);
|
|
result.y = -1 * sinInt(angle);
|
|
|
|
return result;
|
|
}
|
|
|
|
uint16_t sqrtInt(uint_maybe32_t value)
|
|
{
|
|
profileCall(sqrtInt);
|
|
|
|
uint_maybe32_t result = 0;
|
|
|
|
uint_maybe32_t a = value;
|
|
|
|
#ifdef RAYCAST_TINY
|
|
uint_maybe32_t b = 1u << 14;
|
|
#else
|
|
uint_maybe32_t b = 1u << 30;
|
|
#endif
|
|
|
|
while (b > a)
|
|
b >>= 2;
|
|
|
|
while (b != 0)
|
|
{
|
|
if (a >= result + b)
|
|
{
|
|
a -= result + b;
|
|
result = result + 2 * b;
|
|
}
|
|
|
|
b >>= 2;
|
|
result >>= 1;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
Unit dist(Vector2D p1, Vector2D p2)
|
|
{
|
|
profileCall(dist);
|
|
|
|
int_maybe32_t dx = p2.x - p1.x;
|
|
int_maybe32_t dy = p2.y - p1.y;
|
|
|
|
dx = dx * dx;
|
|
dy = dy * dy;
|
|
|
|
return sqrtInt((uint_maybe32_t) (dx + dy));
|
|
}
|
|
|
|
Unit len(Vector2D v)
|
|
{
|
|
profileCall(len);
|
|
|
|
v.x *= v.x;
|
|
v.y *= v.y;
|
|
|
|
return sqrtInt(((uint_maybe32_t) v.x) + ((uint_maybe32_t) v.y));
|
|
}
|
|
|
|
int8_t pointIsLeftOfRay(Vector2D point, Ray ray)
|
|
{
|
|
profileCall(pointIsLeftOfRay);
|
|
|
|
Unit dX = point.x - ray.start.x;
|
|
Unit dY = point.y - ray.start.y;
|
|
return (ray.direction.x * dY - ray.direction.y * dX) > 0;
|
|
// ^ Z component of cross-product
|
|
}
|
|
|
|
/**
|
|
Casts a ray within a single square, to collide with the square borders.
|
|
*/
|
|
void castRaySquare(Ray localRay, Vector2D *nextCellOff, Vector2D *collOff)
|
|
{
|
|
profileCall(castRaySquare);
|
|
|
|
nextCellOff->x = 0;
|
|
nextCellOff->y = 0;
|
|
|
|
Ray criticalLine = localRay;
|
|
|
|
#define helper(c1,c2,n)\
|
|
{\
|
|
nextCellOff->c1 = n;\
|
|
collOff->c1 = criticalLine.start.c1 - localRay.start.c1;\
|
|
collOff->c2 = \
|
|
(((int_maybe32_t) collOff->c1) * localRay.direction.c2) /\
|
|
((localRay.direction.c1 == 0) ? 1 : localRay.direction.c1);\
|
|
}
|
|
|
|
#define helper2(n1,n2,c)\
|
|
if (pointIsLeftOfRay(localRay.start,criticalLine) == c)\
|
|
helper(y,x,n1)\
|
|
else\
|
|
helper(x,y,n2)
|
|
|
|
if (localRay.direction.x > 0)
|
|
{
|
|
criticalLine.start.x = UNITS_PER_SQUARE - 1;
|
|
|
|
if (localRay.direction.y > 0)
|
|
{
|
|
// top right
|
|
criticalLine.start.y = UNITS_PER_SQUARE - 1;
|
|
helper2(1,1,1)
|
|
}
|
|
else
|
|
{
|
|
// bottom right
|
|
criticalLine.start.y = 0;
|
|
helper2(-1,1,0)
|
|
}
|
|
}
|
|
else
|
|
{
|
|
criticalLine.start.x = 0;
|
|
|
|
if (localRay.direction.y > 0)
|
|
{
|
|
// top left
|
|
criticalLine.start.y = UNITS_PER_SQUARE - 1;
|
|
helper2(1,-1,0)
|
|
}
|
|
else
|
|
{
|
|
// bottom left
|
|
criticalLine.start.y = 0;
|
|
helper2(-1,-1,1)
|
|
}
|
|
}
|
|
|
|
#undef helper2
|
|
#undef helper
|
|
|
|
collOff->x += nextCellOff->x;
|
|
collOff->y += nextCellOff->y;
|
|
}
|
|
|
|
void castRayMultiHit(Ray ray, ArrayFunction arrayFunc, HitResult *hitResults,
|
|
uint16_t *hitResultsLen, RayConstraints constraints)
|
|
{
|
|
profileCall(castRayMultiHit);
|
|
|
|
Vector2D initialPos = ray.start;
|
|
Vector2D currentPos = ray.start;
|
|
|
|
Vector2D currentSquare;
|
|
|
|
currentSquare.x = ray.start.x / UNITS_PER_SQUARE;
|
|
currentSquare.y = ray.start.y / UNITS_PER_SQUARE;
|
|
|
|
if (ray.start.x < 0) // round down, not toward zero
|
|
currentSquare.x--;
|
|
|
|
if (ray.start.y < 0)
|
|
currentSquare.y--;
|
|
|
|
*hitResultsLen = 0;
|
|
|
|
int16_t squareType = arrayFunc(currentSquare.x,currentSquare.y);
|
|
|
|
Vector2D no, co; // next cell offset, collision offset
|
|
|
|
no.x = 0; // just to supress a warning
|
|
no.y = 0;
|
|
|
|
for (uint16_t i = 0; i < constraints.maxSteps; ++i)
|
|
{
|
|
int16_t currentType = arrayFunc(currentSquare.x,currentSquare.y);
|
|
|
|
if (currentType != squareType)
|
|
{
|
|
// collision
|
|
|
|
HitResult h;
|
|
|
|
h.position = currentPos;
|
|
h.square = currentSquare;
|
|
h.distance = dist(initialPos,currentPos);
|
|
|
|
if (no.y > 0)
|
|
h.direction = 0;
|
|
else if (no.x > 0)
|
|
h.direction = 1;
|
|
else if (no.y < 0)
|
|
h.direction = 2;
|
|
else
|
|
h.direction = 3;
|
|
|
|
hitResults[*hitResultsLen] = h;
|
|
|
|
*hitResultsLen += 1;
|
|
|
|
squareType = currentType;
|
|
|
|
if (*hitResultsLen >= constraints.maxHits)
|
|
break;
|
|
}
|
|
|
|
ray.start.x = currentPos.x < 0 ?
|
|
(UNITS_PER_SQUARE + currentPos.x % UNITS_PER_SQUARE - 1) :
|
|
(currentPos.x % UNITS_PER_SQUARE);
|
|
|
|
ray.start.y = currentPos.y < 0 ?
|
|
(UNITS_PER_SQUARE + currentPos.y % UNITS_PER_SQUARE - 1) :
|
|
(currentPos.y % UNITS_PER_SQUARE);
|
|
|
|
castRaySquare(ray,&no,&co);
|
|
|
|
currentSquare.x += no.x;
|
|
currentSquare.y += no.y;
|
|
|
|
// offset into the next cell
|
|
currentPos.x += co.x;
|
|
currentPos.y += co.y;
|
|
}
|
|
}
|
|
|
|
HitResult castRay(Ray ray, ArrayFunction arrayFunc)
|
|
{
|
|
profileCall(castRay);
|
|
|
|
HitResult result;
|
|
uint16_t len;
|
|
RayConstraints c;
|
|
|
|
c.maxSteps = 1000;
|
|
c.maxHits = 1;
|
|
|
|
castRayMultiHit(ray,arrayFunc,&result,&len,c);
|
|
|
|
if (len == 0)
|
|
result.distance = -1;
|
|
|
|
return result;
|
|
}
|
|
|
|
void castRaysMultiHit(Camera cam, ArrayFunction arrayFunc,
|
|
ColumnFunction columnFunc, RayConstraints constraints)
|
|
{
|
|
uint16_t fovHalf = cam.fovAngle / 2;
|
|
|
|
Vector2D dir1 = angleToDirection(cam.direction - fovHalf);
|
|
Vector2D dir2 = angleToDirection(cam.direction + fovHalf);
|
|
|
|
Unit dX = dir2.x - dir1.x;
|
|
Unit dY = dir2.y - dir1.y;
|
|
|
|
HitResult hits[constraints.maxHits];
|
|
Ray rays[constraints.maxHits];
|
|
uint16_t hitCount;
|
|
|
|
Ray r;
|
|
r.start = cam.position;
|
|
|
|
for (uint16_t i = 0; i < cam.resolution.x; ++i)
|
|
{
|
|
r.direction.x = dir1.x + (dX * i) / cam.resolution.x;
|
|
r.direction.y = dir1.y + (dY * i) / cam.resolution.x;
|
|
|
|
castRayMultiHit(r,arrayFunc,hits,&hitCount,constraints);
|
|
|
|
columnFunc(hits,hitCount,i,r);
|
|
}
|
|
}
|
|
|
|
PixelFunction _pixelFunction = 0;
|
|
ArrayFunction _arrayFunction = 0;
|
|
Camera _camera;
|
|
Unit _floorDepthStep = 0;
|
|
Unit _startHeight = 0;
|
|
int_maybe32_t _camResYLimit = 0;
|
|
uint16_t _middleRow = 0;
|
|
|
|
void _columnFunction(HitResult *hits, uint16_t hitCount, uint16_t x, Ray ray)
|
|
{
|
|
int_maybe32_t y = _camResYLimit; // screen y (for floor), will only go up
|
|
int_maybe32_t y2 = 0; // screen y (for ceil), will only fo down
|
|
|
|
Unit worldZPrev = _startHeight;
|
|
|
|
Unit worldZPrevCeil = UNITS_PER_SQUARE * 5 + _startHeight;
|
|
|
|
PixelInfo p;
|
|
p.position.x = x;
|
|
|
|
// we'll be simulatenously drawing the floor and the ceiling now
|
|
for (uint_maybe32_t j = 0; j < hitCount; ++j)
|
|
{
|
|
HitResult hit = hits[j];
|
|
|
|
/* FIXME/TODO: The adjusted (=orthogonal, camera-space) distance could
|
|
possibly be computed more efficiently by not computing Euclidean
|
|
distance at all, but rather compute the distance of the collision
|
|
point from the projection plane (line). */
|
|
|
|
Unit dist = // adjusted distance
|
|
(hit.distance * vectorsAngleCos(angleToDirection(_camera.direction),
|
|
ray.direction)) / UNITS_PER_SQUARE;
|
|
|
|
dist = dist == 0 ? 1 : dist; // prevent division by zero
|
|
|
|
Unit wallHeight = _arrayFunction(hit.square.x,hit.square.y);
|
|
|
|
Unit worldZ2 = wallHeight - _camera.height;
|
|
|
|
Unit worldZ2Ceil = (UNITS_PER_SQUARE * 5 - wallHeight) - _camera.height;
|
|
|
|
int16_t z1Screen = _middleRow - perspectiveScale(
|
|
(worldZPrev * _camera.resolution.y) / UNITS_PER_SQUARE,dist,1);
|
|
|
|
z1Screen = clamp(z1Screen,0,_camResYLimit);
|
|
|
|
int16_t z1ScreenCeil = _middleRow - perspectiveScale(
|
|
(worldZPrevCeil * _camera.resolution.y) / UNITS_PER_SQUARE,dist,1);
|
|
|
|
z1ScreenCeil = clamp(z1ScreenCeil,0,_camResYLimit);
|
|
|
|
int16_t z2Screen = _middleRow - perspectiveScale(
|
|
(worldZ2 * _camera.resolution.y) / UNITS_PER_SQUARE,dist,1);
|
|
|
|
z2Screen = clamp(z2Screen,0,_camResYLimit);
|
|
|
|
int16_t z2ScreenCeil = _middleRow - perspectiveScale(
|
|
(worldZ2Ceil * _camera.resolution.y) / UNITS_PER_SQUARE,dist,1);
|
|
|
|
z2ScreenCeil = clamp(z2ScreenCeil,0,_camResYLimit);
|
|
|
|
Unit zTop = z1Screen < z2Screen ? z1Screen : z2Screen;
|
|
|
|
Unit zBottomCeil = z1ScreenCeil > z2ScreenCeil ?
|
|
z1ScreenCeil : z2ScreenCeil;
|
|
|
|
if (zTop <= zBottomCeil)
|
|
zBottomCeil = zTop; // walls on ceiling and floor met
|
|
|
|
// draw floor until wall
|
|
|
|
p.isWall = 0;
|
|
|
|
Unit floorCameraDiff = absVal(worldZPrev) * 4;
|
|
|
|
for (int_maybe32_t i = y; i > z1Screen; --i)
|
|
{
|
|
p.position.y = i;
|
|
p.depth = (_camera.resolution.y - i) * _floorDepthStep + floorCameraDiff;
|
|
_pixelFunction(p);
|
|
}
|
|
|
|
// draw ceiling until wall
|
|
|
|
Unit ceilCameraDiff = absVal(worldZPrevCeil) * 4;
|
|
|
|
for (int_maybe32_t i = y2; i < z1ScreenCeil; ++i)
|
|
{
|
|
p.position.y = i;
|
|
p.depth = i * _floorDepthStep + ceilCameraDiff;
|
|
_pixelFunction(p);
|
|
}
|
|
|
|
// draw wall
|
|
|
|
p.isWall = 1;
|
|
p.depth = dist;
|
|
|
|
for (int_maybe32_t i = z1Screen < y ? z1Screen : y; i > z2Screen; --i)
|
|
{
|
|
p.position.y = i;
|
|
p.hit = hit;
|
|
_pixelFunction(p);
|
|
}
|
|
|
|
// draw ceiling wall
|
|
|
|
for (int_maybe32_t i = z1ScreenCeil > y2 ? z1ScreenCeil : y2;
|
|
i < z2ScreenCeil; ++i)
|
|
{
|
|
p.position.y = i;
|
|
p.hit = hit;
|
|
_pixelFunction(p);
|
|
}
|
|
|
|
y = y > zTop ? zTop : y;
|
|
worldZPrev = worldZ2;
|
|
|
|
y2 = y2 < zBottomCeil ? zBottomCeil : y2;
|
|
|
|
worldZPrevCeil = worldZ2Ceil;
|
|
|
|
if (y <= y2)
|
|
break; // walls on ceiling and floor met
|
|
}
|
|
|
|
// draw floor until horizon
|
|
|
|
p.isWall = 0;
|
|
|
|
Unit floorCameraDiff = absVal(worldZPrev) * 4;
|
|
|
|
uint16_t horizon = y <= y2 ? y : _middleRow;
|
|
|
|
for (int_maybe32_t i = y; i >= horizon; --i)
|
|
{
|
|
p.position.y = i;
|
|
p.depth = (_camera.resolution.y - i) * _floorDepthStep + floorCameraDiff;
|
|
|
|
_pixelFunction(p);
|
|
}
|
|
|
|
// draw ceiling until horizon
|
|
|
|
Unit ceilCameraDiff = absVal(worldZPrevCeil) * 4;
|
|
|
|
for (int_maybe32_t i = y2; i < horizon; ++i)
|
|
{
|
|
p.position.y = i;
|
|
p.depth = i * _floorDepthStep + ceilCameraDiff;
|
|
|
|
_pixelFunction(p);
|
|
}
|
|
|
|
}
|
|
|
|
void render(Camera cam, ArrayFunction arrayFunc, PixelFunction pixelFunc,
|
|
RayConstraints constraints)
|
|
{
|
|
_pixelFunction = pixelFunc;
|
|
_arrayFunction = arrayFunc;
|
|
_camera = cam;
|
|
_camResYLimit = cam.resolution.y - 1;
|
|
_middleRow = cam.resolution.y / 2;
|
|
|
|
_startHeight = arrayFunc(
|
|
cam.position.x / UNITS_PER_SQUARE,
|
|
cam.position.y / UNITS_PER_SQUARE) -1 * cam.height;
|
|
|
|
// TODO
|
|
_floorDepthStep = (12 * UNITS_PER_SQUARE) / cam.resolution.y;
|
|
|
|
castRaysMultiHit(cam,arrayFunc,_columnFunction,constraints);
|
|
}
|
|
|
|
Vector2D normalize(Vector2D v)
|
|
{
|
|
profileCall(normalize);
|
|
|
|
Vector2D result;
|
|
|
|
Unit l = len(v);
|
|
|
|
l = l == 0 ? 1 : l;
|
|
|
|
result.x = (v.x * UNITS_PER_SQUARE) / l;
|
|
result.y = (v.y * UNITS_PER_SQUARE) / l;
|
|
|
|
return result;
|
|
}
|
|
|
|
Unit vectorsAngleCos(Vector2D v1, Vector2D v2)
|
|
{
|
|
profileCall(vectorsAngleCos);
|
|
|
|
v1 = normalize(v1);
|
|
v2 = normalize(v2);
|
|
|
|
return (v1.x * v2.x + v1.y * v2.y) / UNITS_PER_SQUARE;
|
|
}
|
|
|
|
Unit degreesToUnitsAngle(int16_t degrees)
|
|
{
|
|
return (degrees * UNITS_PER_SQUARE) / 360;
|
|
}
|
|
|
|
Unit perspectiveScale(Unit originalSize, Unit distance, Unit fov)
|
|
{
|
|
return (originalSize * UNITS_PER_SQUARE) / distance;
|
|
|
|
distance *= fov;
|
|
distance = distance == 0 ? 1 : distance; // prevent division by zero
|
|
|
|
return originalSize / distance;
|
|
}
|
|
|
|
#endif
|