1
0
Fork 0
mirror of https://git.coom.tech/drummyfish/small3dlib.git synced 2025-01-07 03:56:19 +01:00

Remove mat pointers

This commit is contained in:
Miloslav Ciz 2021-08-03 20:06:18 -05:00
parent c5a79262fb
commit 01ac383ac8
2 changed files with 97 additions and 93 deletions

View file

@ -455,8 +455,8 @@ int main()
S3L_Transform3D transform0, transform1;
S3L_initTransoform3D(&transform0);
S3L_initTransoform3D(&transform1);
S3L_initTransform3D(&transform0);
S3L_initTransform3D(&transform1);
transform0.translation.x = -2 * S3L_FRACTIONS_PER_UNIT;
transform0.translation.y = 5 * S3L_FRACTIONS_PER_UNIT;

View file

@ -10,7 +10,7 @@
license: CC0 1.0 (public domain)
found at https://creativecommons.org/publicdomain/zero/1.0/
+ additional waiver of all IP
version: 0.852d
version: 0.853d
Before including the library, define S3L_PIXEL_FUNCTION to the name of the
function you'll be using to draw single pixels (this function will be called
@ -206,8 +206,7 @@ typedef uint16_t S3L_Index;
3: NOT IMPLEMENTED YET
Perform both geometrical and barycentric correction of triangle crossing
the near plane. This is significantly more expensive but results in
correct rendering.
*/
correct rendering. */
#define S3L_NEAR_CROSS_STRATEGY 0
#endif
@ -232,11 +231,11 @@ typedef uint16_t S3L_Index;
/** Specifies what type of perspective correction (PC) to use. Remember this
is an expensive operation! Possible values:
- 0: No perspective correction. Fastest, inaccurate from most angles.
- 1: Per-pixel perspective correction, accurate but very expensive.
- 2: Approximation (computing only at every S3L_PC_APPROX_LENGTHth pixel).
Quake-style approximation is used, which only computes the PC after
S3L_PC_APPROX_LENGTH pixels. This is reasonably accurate and fast. */
0: No perspective correction. Fastest, inaccurate from most angles.
1: Per-pixel perspective correction, accurate but very expensive.
2: Approximation (computing only at every S3L_PC_APPROX_LENGTHth pixel).
Quake-style approximation is used, which only computes the PC after
S3L_PC_APPROX_LENGTH pixels. This is reasonably accurate and fast. */
#define S3L_PERSPECTIVE_CORRECTION 0
#endif
@ -266,15 +265,15 @@ typedef uint16_t S3L_Index;
/** What type of z-buffer (depth buffer) to use for visibility determination.
Possible values:
- 0: Don't use z-buffer. This saves a lot of memory, but visibility checking
won't be pixel-accurate and has to mostly be done by other means
(typically sorting).
- 1: Use full z-buffer (of S3L_Units) for visibiltiy determination. This is
the most accurate option (and also a fast one), but requires a big
amount of memory.
- 2: Use reduced-size z-buffer (of bytes). This is fast and somewhat
accurate, but inaccuracies can occur and a considerable amount of memory
is needed. */
0: Don't use z-buffer. This saves a lot of memory, but visibility checking
won't be pixel-accurate and has to mostly be done by other means (typically
sorting).
1: Use full z-buffer (of S3L_Units) for visibiltiy determination. This is the
most accurate option (and also a fast one), but requires a big amount of
memory.
2: Use reduced-size z-buffer (of bytes). This is fast and somewhat accurate,
but inaccuracies can occur and a considerable amount of memory is
needed. */
#define S3L_Z_BUFFER 0
#endif
@ -304,14 +303,13 @@ typedef uint16_t S3L_Index;
the maximum number of triangles that can be drawn in a single frame
(S3L_MAX_TRIANGES_DRAWN). Possible values:
- 0: Don't sort triangles. This is fastest and doesn't use extra memory.
- 1: Sort triangles from back to front. This can in most cases solve
visibility without requiring almost any extra memory compared to
z-buffer.
- 2: Sort triangles from front to back. This can be faster than back to
front, because we prevent computing pixels that will be overwritten by
nearer ones, but we need a 1b stencil buffer for this (enable
S3L_STENCIL_BUFFER), so a bit more memory is needed. */
0: Don't sort triangles. This is fastest and doesn't use extra memory.
1: Sort triangles from back to front. This can in most cases solve visibility
without requiring almost any extra memory compared to z-buffer.
2: Sort triangles from front to back. This can be faster than back to front
because we prevent computing pixels that will be overwritten by nearer
ones, but we need a 1b stencil buffer for this (enable S3L_STENCIL_BUFFER),
so a bit more memory is needed. */
#define S3L_SORT 0
#endif
@ -454,17 +452,17 @@ typedef S3L_Unit S3L_Mat4[4][4];
(m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3])
/** Initializes a 4x4 matrix to identity. */
static inline void S3L_initMat4(S3L_Mat4 *m);
static inline void S3L_initMat4(S3L_Mat4 m);
void S3L_transposeMat4(S3L_Mat4 *m);
void S3L_copyMat4(S3L_Mat4 src, S3L_Mat4 dst);
// TODO: why pass pointer to matrix when matrix is an array? fix this?
void S3L_transposeMat4(S3L_Mat4 m);
void S3L_makeTranslationMat(
S3L_Unit offsetX,
S3L_Unit offsetY,
S3L_Unit offsetZ,
S3L_Mat4 *m);
S3L_Mat4 m);
/** Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with
S3L_FRACTIONS_PER_UNIT! */
@ -472,31 +470,31 @@ void S3L_makeScaleMatrix(
S3L_Unit scaleX,
S3L_Unit scaleY,
S3L_Unit scaleZ,
S3L_Mat4 *m);
S3L_Mat4 m);
/** Makes a matrix for rotation in the ZXY order. */
void S3L_makeRotationMatrixZXY(
S3L_Unit byX,
S3L_Unit byY,
S3L_Unit byZ,
S3L_Mat4 *m);
S3L_Mat4 m);
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m);
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m);
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m);
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m);
/** Multiplies a vector by a matrix with normalization by
S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m);
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
/** Same as S3L_vec4Xmat4 but faster, because this version doesn't compute the
W component of the result, which is usually not needed. */
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 *m);
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
/** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT.
Result is stored in the first matrix. The result represents a transformation
that has the same effect as applying the transformation represented by m1 and
then m2 (in that order). */
void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2);
void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2);
typedef struct
{
@ -983,9 +981,9 @@ void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted)
result->z -= substracted.z;
}
void S3L_initMat4(S3L_Mat4 *m)
void S3L_initMat4(S3L_Mat4 m)
{
#define M(x,y) (*m)[x][y]
#define M(x,y) m[x][y]
#define S S3L_FRACTIONS_PER_UNIT
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
@ -997,6 +995,13 @@ void S3L_initMat4(S3L_Mat4 *m)
#undef S
}
void S3L_copyMat4(S3L_Mat4 src, S3L_Mat4 dst)
{
for (uint8_t j = 0; j < 4; ++j)
for (uint8_t i = 0; i < 4; ++i)
dst[i][j] = src[i][j];
}
S3L_Unit S3L_dotProductVec3(S3L_Vec4 a, S3L_Vec4 b)
{
return (a.x * b.x + a.y * b.y + a.z * b.z) / S3L_FRACTIONS_PER_UNIT;
@ -1171,7 +1176,7 @@ void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
S3L_Mat4 m;
S3L_makeWorldMatrix(model.transform,&m);
S3L_makeWorldMatrix(model.transform,m);
if (transformNormals)
for (S3L_Index i = 0; i < model.vertexCount * 3; i += 3)
@ -1180,7 +1185,7 @@ void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
n.y = dst[i + 1];
n.z = dst[i + 2];
S3L_vec4Xmat4(&n,&m);
S3L_vec4Xmat4(&n,m);
dst[i] = n.x;
dst[i + 1] = n.y;
@ -1188,7 +1193,7 @@ void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
}
}
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
{
S3L_Vec4 vBackup;
@ -1198,10 +1203,10 @@ void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
vBackup.w = v->w;
#define dotCol(col)\
((vBackup.x * (*m)[col][0]) +\
(vBackup.y * (*m)[col][1]) +\
(vBackup.z * (*m)[col][2]) +\
(vBackup.w * (*m)[col][3])) / S3L_FRACTIONS_PER_UNIT
((vBackup.x * m[col][0]) +\
(vBackup.y * m[col][1]) +\
(vBackup.z * m[col][2]) +\
(vBackup.w * m[col][3])) / S3L_FRACTIONS_PER_UNIT
v->x = dotCol(0);
v->y = dotCol(1);
@ -1209,16 +1214,16 @@ void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
v->w = dotCol(3);
}
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
{
S3L_Vec4 vBackup;
#undef dotCol
#define dotCol(col)\
(vBackup.x * (*m)[col][0]) / S3L_FRACTIONS_PER_UNIT +\
(vBackup.y * (*m)[col][1]) / S3L_FRACTIONS_PER_UNIT +\
(vBackup.z * (*m)[col][2]) / S3L_FRACTIONS_PER_UNIT +\
(*m)[col][3]
(vBackup.x * m[col][0]) / S3L_FRACTIONS_PER_UNIT +\
(vBackup.y * m[col][1]) / S3L_FRACTIONS_PER_UNIT +\
(vBackup.z * m[col][2]) / S3L_FRACTIONS_PER_UNIT +\
m[col][3]
vBackup.x = v->x;
vBackup.y = v->y;
@ -1296,22 +1301,22 @@ S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b)
S3L_abs(a.z - b.z);
}
void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2)
void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2)
{
S3L_Mat4 mat1;
for (uint16_t row = 0; row < 4; ++row)
for (uint16_t col = 0; col < 4; ++col)
mat1[col][row] = (*m1)[col][row];
mat1[col][row] = m1[col][row];
for (uint16_t row = 0; row < 4; ++row)
for (uint16_t col = 0; col < 4; ++col)
{
(*m1)[col][row] = 0;
m1[col][row] = 0;
for (uint16_t i = 0; i < 4; ++i)
(*m1)[col][row] +=
(mat1[i][row] * (*m2)[col][i]) / S3L_FRACTIONS_PER_UNIT;
m1[col][row] +=
(mat1[i][row] * m2[col][i]) / S3L_FRACTIONS_PER_UNIT;
}
}
@ -1401,9 +1406,9 @@ void S3L_makeTranslationMat(
S3L_Unit offsetX,
S3L_Unit offsetY,
S3L_Unit offsetZ,
S3L_Mat4 *m)
S3L_Mat4 m)
{
#define M(x,y) (*m)[x][y]
#define M(x,y) m[x][y]
#define S S3L_FRACTIONS_PER_UNIT
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
@ -1419,9 +1424,9 @@ void S3L_makeScaleMatrix(
S3L_Unit scaleX,
S3L_Unit scaleY,
S3L_Unit scaleZ,
S3L_Mat4 *m)
S3L_Mat4 m)
{
#define M(x,y) (*m)[x][y]
#define M(x,y) m[x][y]
M(0,0) = scaleX; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
M(0,1) = 0; M(1,1) = scaleY; M(2,1) = 0; M(3,1) = 0;
@ -1435,7 +1440,7 @@ void S3L_makeRotationMatrixZXY(
S3L_Unit byX,
S3L_Unit byY,
S3L_Unit byZ,
S3L_Mat4 *m)
S3L_Mat4 m)
{
byX *= -1;
byY *= -1;
@ -1449,7 +1454,7 @@ void S3L_makeRotationMatrixZXY(
S3L_Unit cy = S3L_cos(byY);
S3L_Unit cz = S3L_cos(byZ);
#define M(x,y) (*m)[x][y]
#define M(x,y) m[x][y]
#define S S3L_FRACTIONS_PER_UNIT
M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S);
@ -1599,13 +1604,13 @@ void project3DPointToScreen(
S3L_Vec4 *result)
{
S3L_Mat4 m;
S3L_makeCameraMatrix(camera.transform,&m);
S3L_makeCameraMatrix(camera.transform,m);
S3L_Unit s = point.w;
point.w = S3L_FRACTIONS_PER_UNIT;
S3L_vec3Xmat4(&point,&m);
S3L_vec3Xmat4(&point,m);
point.z = S3L_nonZero(point.z);
@ -1694,14 +1699,14 @@ void S3L_rotationToDirections(
{
S3L_Mat4 m;
S3L_makeRotationMatrixZXY(rotation.x,rotation.y,rotation.z,&m);
S3L_makeRotationMatrixZXY(rotation.x,rotation.y,rotation.z,m);
if (forw != 0)
{
forw->x = 0;
forw->y = 0;
forw->z = length;
S3L_vec3Xmat4(forw,&m);
S3L_vec3Xmat4(forw,m);
}
if (right != 0)
@ -1709,7 +1714,7 @@ void S3L_rotationToDirections(
right->x = length;
right->y = 0;
right->z = 0;
S3L_vec3Xmat4(right,&m);
S3L_vec3Xmat4(right,m);
}
if (up != 0)
@ -1717,7 +1722,7 @@ void S3L_rotationToDirections(
up->x = 0;
up->y = length;
up->z = 0;
S3L_vec3Xmat4(up,&m);
S3L_vec3Xmat4(up,m);
}
}
@ -2392,14 +2397,13 @@ void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle)
(angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT;
}
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m)
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m)
{
S3L_makeScaleMatrix(
worldTransform.scale.x,
worldTransform.scale.y,
worldTransform.scale.z,
m
);
m);
S3L_Mat4 t;
@ -2407,33 +2411,33 @@ void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m)
worldTransform.rotation.x,
worldTransform.rotation.y,
worldTransform.rotation.z,
&t);
t);
S3L_mat4Xmat4(m,&t);
S3L_mat4Xmat4(m,t);
S3L_makeTranslationMat(
worldTransform.translation.x,
worldTransform.translation.y,
worldTransform.translation.z,
&t);
t);
S3L_mat4Xmat4(m,&t);
S3L_mat4Xmat4(m,t);
}
void S3L_transposeMat4(S3L_Mat4 *m)
void S3L_transposeMat4(S3L_Mat4 m)
{
S3L_Unit tmp;
for (uint8_t y = 0; y < 3; ++y)
for (uint8_t x = 1 + y; x < 4; ++x)
{
tmp = (*m)[x][y];
(*m)[x][y] = (*m)[y][x];
(*m)[y][x] = tmp;
tmp = m[x][y];
m[x][y] = m[y][x];
m[y][x] = tmp;
}
}
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m)
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m)
{
S3L_makeTranslationMat(
-1 * cameraTransform.translation.x,
@ -2447,11 +2451,11 @@ void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m)
cameraTransform.rotation.x,
cameraTransform.rotation.y,
cameraTransform.rotation.z,
&r);
r);
S3L_transposeMat4(&r); // transposing creates an inverse transform
S3L_transposeMat4(r); // transposing creates an inverse transform
S3L_mat4Xmat4(m,&r);
S3L_mat4Xmat4(m,r);
}
int8_t S3L_triangleWinding(
@ -2528,7 +2532,7 @@ void _S3L_projectVertex(
const S3L_Model3D *model,
S3L_Index triangleIndex,
uint8_t vertex,
S3L_Mat4 *projectionMatrix,
S3L_Mat4 projectionMatrix,
S3L_Vec4 *result)
{
uint32_t vertexIndex = model->triangles[triangleIndex * 3 + vertex] * 3;
@ -2570,7 +2574,7 @@ void _S3L_mapProjectedVertexToScreen(S3L_Vec4 *vertex, S3L_Unit focalLength)
uint8_t _S3L_projectTriangle(
const S3L_Model3D *model,
S3L_Index triangleIndex,
S3L_Mat4 *matrix,
S3L_Mat4 matrix,
uint32_t focalLength,
S3L_Vec4 transformed[6])
{
@ -2661,7 +2665,7 @@ void S3L_drawScene(S3L_Scene scene)
const S3L_Model3D *model;
S3L_Index modelIndex, triangleIndex;
S3L_makeCameraMatrix(scene.camera.transform,&matCamera);
S3L_makeCameraMatrix(scene.camera.transform,matCamera);
#if S3L_SORT != 0
uint16_t previousModel = 0;
@ -2681,7 +2685,7 @@ void S3L_drawScene(S3L_Scene scene)
#endif
if (scene.models[modelIndex].customTransformMatrix == 0)
S3L_makeWorldMatrix(scene.models[modelIndex].transform,&matFinal);
S3L_makeWorldMatrix(scene.models[modelIndex].transform,matFinal);
else
{
S3L_Mat4 *m = scene.models[modelIndex].customTransformMatrix;
@ -2691,7 +2695,7 @@ void S3L_drawScene(S3L_Scene scene)
matFinal[i][j] = (*m)[i][j];
}
S3L_mat4Xmat4(&matFinal,&matCamera);
S3L_mat4Xmat4(matFinal,matCamera);
S3L_Index triangleCount = scene.models[modelIndex].triangleCount;
@ -2705,7 +2709,7 @@ void S3L_drawScene(S3L_Scene scene)
already projected vertices, but after some testing this was abandoned,
no gain was seen. */
uint8_t split = _S3L_projectTriangle(model,triangleIndex,&matFinal,
uint8_t split = _S3L_projectTriangle(model,triangleIndex,matFinal,
scene.camera.focalLength,transformed);
if (S3L_triangleIsVisible(transformed[0],transformed[1],transformed[2],
@ -2785,8 +2789,8 @@ void S3L_drawScene(S3L_Scene scene)
if (modelIndex != previousModel)
{
// only recompute the matrix when the model has changed
S3L_makeWorldMatrix(model->transform,&matFinal);
S3L_mat4Xmat4(&matFinal,&matCamera);
S3L_makeWorldMatrix(model->transform,matFinal);
S3L_mat4Xmat4(matFinal,matCamera);
previousModel = modelIndex;
}
@ -2795,7 +2799,7 @@ void S3L_drawScene(S3L_Scene scene)
require a lot of memory, which for small resolutions could be even
worse than z-bufer. So this seems to be the best way memory-wise. */
uint8_t split = _S3L_projectTriangle(model,triangleIndex,&matFinal,
uint8_t split = _S3L_projectTriangle(model,triangleIndex,matFinal,
scene.camera.focalLength,transformed);
S3L_drawTriangle(transformed[0],transformed[1],transformed[2],modelIndex,