/* WIP Simple realtime 3D software rasterization library. It is fast, focused on resource-limited computers, located in a single C header file, with no dependencies, using only integer arithmetic. author: Miloslav Ciz license: CC0 1.0 -------------------- This work's goal is to never be encumbered by any exclusive intellectual property rights. The work is therefore provided under CC0 1.0 + additional WAIVER OF ALL INTELLECTUAL PROPERTY RIGHTS that waives the rest of intellectual property rights not already waived by CC0 1.0. The WAIVER OF ALL INTELLECTUAL PROPERTY RGHTS is as follows: Each contributor to this work agrees that they waive any exclusive rights, including but not limited to copyright, patents, trademark, trade dress, industrial design, plant varieties and trade secrets, to any and all ideas, concepts, processes, discoveries, improvements and inventions conceived, discovered, made, designed, researched or developed by the contributor either solely or jointly with others, which relate to this work or result from this work. Should any waiver of such right be judged legally invalid or ineffective under applicable law, the contributor hereby grants to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable and unconditional license to this right. -------------------- CONVENTIONS: Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs. We use row vectors. COORDINATE SYSTEMS: In 3D space, a left-handed coord. system is used. One spatial unit is split into S3L_FRACTIONS_PER_UNIT fractions (fixed point arithmetic). y ^ | _ | /| z | / | / [0,0,0]-------> x Untransformed camera is placed at [0,0,0], looking forward along +z axis. The projection plane is centered at [0,0,0], stretrinch from -S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x), vertical size (y) depends on the camera aspect ratio. Camera FOV is defined by focal length. y ^ | _ | /| z ____|_/__ | |/ | -----[0,0,0]-|-----> x |____|____| | | Coordinates of pixels on screen start typically at the top left, from [0,0]. Triangle rasterization rules are these (mostly same as OpenGL, D3D etc.): - Let's define: - left side: - not exactly horizontal, and on the left side of triangle - exactly horizontal and above the topmost (in other words: its normal points at least a little to the left or completely up) - right side: not left side - Pixel centers are at integer coordinates and triangle for drawing are specified with integer coordinates of pixel centers. - A pixel is rasterized: - if its center is inside the triangle OR - if its center is exactly on the triangle side which is left and at the same time is not on the side that's right (case of a triangle that's on a single line) OR - if its center is exactly on the triangle corner of sides neither of which is right. These rules imply among others: - Adjacent triangles don't have any overlapping pixels, nor gaps between. - Triangles of points that lie on a single line are NOT rasterized. - A single "long" triangle CAN be rasterized as non-continuous. - Transforming (e.g. mirroring, rotating by 90 degrees etc.) a result of rasterizing triangle A is NOT generally equal to applying the same transformation to triangle A first and then rasterizing it. Even the number of rasterized pixels is usually different. - If specifying a triangle with integer coordinates, then: - The bottom-most corner (or side) of a triangle is never rasterized (because it is connected to a right side). - The top-most corner can only be rasterized on completely horizontal side (otherwise it is connected to a right side). - Vertically middle corner is rasterized if and only if it is on the left of the triangle and at the same time is also not the bottom-most corner. */ #ifndef S3L_H #define S3L_H #include typedef int32_t S3L_Unit; /**< Units of measurement in 3D space. There is S3L_FRACTIONS_PER_UNIT in one spatial unit. By dividing the unit into fractions we effectively achieve fixed point arithmetic. The number of fractions is a constant that serves as 1.0 in floating point arithmetic (normalization etc.). */ #define S3L_FRACTIONS_PER_UNIT 512 /**< How many fractions a spatial unit is split into. WARNING: if setting higher than 1024, you'll probably have to modify a sin table otherwise it will overflow. Also other things may overflow, so rather don't do it. */ #define S3L_NONZERO(value) ((value) != 0 ? (value) : 1) /**< prevents division by zero */ #define S3L_SIN_TABLE_LENGTH 128 static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] = { /* 511 was chosen here as a highest number that doesn't overflow during compilation for S3L_FRACTIONS_PER_UNIT == 1024 */ (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511, (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511, (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511, (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511, (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511, (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511, (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511, (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511, (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511, (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511, (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511, (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511, (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511, (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511, (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511, (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511, (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511, (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511, (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511, (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511, (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511, (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511, (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511, (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511, (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511, (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511, (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511, (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511, (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511, (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511, (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511, (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511, (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511, (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511, (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511, (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511, (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511, (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511, (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511, (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511, (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511, (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511, (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511, (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511, (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511, (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511, (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511, (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511, (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511, (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511, (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511, (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511, (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511, (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511, (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511, (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511, (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511, (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511, (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511, (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511 }; #define S3L_SIN_TABLE_UNIT_STEP\ (S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4)) typedef int16_t S3L_ScreenCoord; typedef uint16_t S3L_Index; /** Vector that consists of four scalars and can represent homogenous coordinates, but is generally also used as Vec3 and Vec2. */ typedef struct { S3L_Unit x; S3L_Unit y; S3L_Unit z; S3L_Unit w; } S3L_Vec4; #define S3L_writeVec4(v)\ printf("Vec4: %d %d %d %d\n",(v.x),(v.y),(v.z),(v.w)) static inline void S3L_initVec4(S3L_Vec4 *v) { v->x = 0; v->y = 0; v->z = 0; v->w = S3L_FRACTIONS_PER_UNIT; } typedef S3L_Unit S3L_Mat4[4][4]; /**< 4x4 matrix, used mostly for 3D transforms. The indexing is this: matrix[column][row]. */ #define S3L_writeMat4(m)\ printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\ ,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\ (m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\ (m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\ (m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3]) /** Initializes a 4x4 matrix to identity. */ static inline void S3L_initMat4(S3L_Mat4 *m) { #define M(x,y) (*m)[x][y] #define S S3L_FRACTIONS_PER_UNIT M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0; M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0; M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0; M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S; #undef M #undef S } /** Multiplies a vector by a matrix with normalization by S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */ void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m) { S3L_Vec4 vBackup; vBackup.x = v->x; vBackup.y = v->y; vBackup.z = v->z; vBackup.w = v->w; // TODO: try alternative operation orders to optimize #define dot(col)\ (vBackup.x * (*m)[col][0]) / S3L_FRACTIONS_PER_UNIT +\ (vBackup.y * (*m)[col][1]) / S3L_FRACTIONS_PER_UNIT +\ (vBackup.z * (*m)[col][2]) / S3L_FRACTIONS_PER_UNIT +\ (vBackup.w * (*m)[col][3]) / S3L_FRACTIONS_PER_UNIT v->x = dot(0); v->y = dot(1); v->z = dot(2); v->w = dot(3); #undef dot } // general helper functions static inline int16_t S3L_abs(int16_t value) { return value >= 0 ? value : -1 * value; } static inline int16_t S3L_min(int16_t v1, int16_t v2) { return v1 >= v2 ? v2 : v1; } static inline int16_t S3L_max(int16_t v1, int16_t v2) { return v1 >= v2 ? v1 : v2; } static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod) { return value >= 0 ? (value % mod) : (mod + (value % mod) - 1); } static inline S3L_Unit S3L_nonZero(S3L_Unit value) { return value != 0 ? value : 1; } /** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT. Result is stored in the first matrix. */ void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2) { S3L_Mat4 mat1; for (uint16_t row = 0; row < 4; ++row) for (uint16_t col = 0; col < 4; ++col) mat1[col][row] = (*m1)[col][row]; for (uint16_t row = 0; row < 4; ++row) for (uint16_t col = 0; col < 4; ++col) { (*m1)[col][row] = 0; for (uint16_t i = 0; i < 4; ++i) (*m1)[col][row] += (mat1[i][row] * (*m2)[col][i]) / S3L_FRACTIONS_PER_UNIT; } } S3L_Unit S3L_sin(S3L_Unit x) { x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4); int8_t positive = 1; if (x < S3L_SIN_TABLE_LENGTH) x = x; else if (x < S3L_SIN_TABLE_LENGTH * 2) x = S3L_SIN_TABLE_LENGTH * 2 - x - 1; else if (x < S3L_SIN_TABLE_LENGTH * 3) { x = x - S3L_SIN_TABLE_LENGTH * 2; positive = 0; } else { x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1; positive = 0; } return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x]; } static inline S3L_Unit S3L_cos(S3L_Unit x) { return S3L_sin(x - S3L_FRACTIONS_PER_UNIT / 4); } void S3L_makeTranslationMat( S3L_Unit offsetX, S3L_Unit offsetY, S3L_Unit offsetZ, S3L_Mat4 *m) { #define M(x,y) (*m)[x][y] #define S S3L_FRACTIONS_PER_UNIT M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0; M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0; M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0; M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S; #undef M #undef S } /** Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with S3L_FRACTIONS_PER_UNIT! */ void S3L_makeScaleMatrix( S3L_Unit scaleX, S3L_Unit scaleY, S3L_Unit scaleZ, S3L_Mat4 *m) { #define M(x,y) (*m)[x][y] M(0,0) = scaleX; M(2,0) = 0; M(3,0) = 0; M(0,1) = 0; M(1,1) = scaleY; M(2,1) = 0; M(3,1) = 0; M(0,2) = 0; M(1,2) = 0; M(2,2) = scaleZ; M(3,2) = 0; M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_FRACTIONS_PER_UNIT; #undef M } /** Makes a rotation matrix. For the rotation conventions (meaning, order, units) see the appropriate structure comments. */ void S3L_makeRotationMatrix( S3L_Unit aroundX, S3L_Unit aroundY, S3L_Unit aroundZ, S3L_Mat4 *m) { S3L_Unit sx = S3L_sin(aroundX); S3L_Unit sy = S3L_sin(aroundY); S3L_Unit sz = S3L_sin(aroundZ); S3L_Unit cx = S3L_cos(aroundX); S3L_Unit cy = S3L_cos(aroundY); S3L_Unit cz = S3L_cos(aroundZ); #define M(x,y) (*m)[x][y] #define S S3L_FRACTIONS_PER_UNIT M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S); M(1,0) = (cx * sz) / S; M(2,0) = (cy * sx * sz) / (S * S) - (cz * sy) / S; M(3,0) = 0; M(0,1) = (cz * sy * sx) / (S * S) - (cy * sz) / S; M(1,1) = (cx * cz) / S; M(2,1) = (cy * cz * sx) / (S * S) + (sy * sz) / S; M(3,1) = 0; M(0,2) = (cx * sy) / S; M(1,2) = -1 * sx; M(2,2) = (cy * cx) / S; M(3,2) = 0; M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_FRACTIONS_PER_UNIT; #undef M #undef S } typedef struct { S3L_Vec4 translation; S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order: 1. z = around z (roll) CW looking along z+ 2. x = around x (pitch) CW looking along x+ 3. y = around y (yaw) CW looking along y+ */ S3L_Vec4 scale; } S3L_Transform3D; static inline void S3L_initTransoform3D(S3L_Transform3D *t) { S3L_initVec4(&(t->translation)); S3L_initVec4(&(t->rotation)); t->scale.x = S3L_FRACTIONS_PER_UNIT; t->scale.y = S3L_FRACTIONS_PER_UNIT; t->scale.z = S3L_FRACTIONS_PER_UNIT; } typedef struct { uint16_t resolutionX; uint16_t resolutionY; S3L_Unit focalLength; ///< Defines the field of view (FOV). S3L_Transform3D transform; } S3L_Camera; static inline void S3L_initCamera(S3L_Camera *c) { c->resolutionX = 128; c->resolutionY = 64; c->focalLength = S3L_FRACTIONS_PER_UNIT; S3L_initTransoform3D(&(c->transform)); } typedef struct { S3L_ScreenCoord x; ///< Screen X coordinate. S3L_ScreenCoord y; ///< Screen Y coordinate. S3L_Unit barycentric0; /**< Barycentric coord 0 (corresponds to 1st vertex). Together with 1 and 2 coords these serve to locate the pixel on a triangle and interpolate values between it's three points. The sum of the three coordinates will always be exactly S3L_FRACTIONS_PER_UNIT. */ S3L_Unit barycentric1; ///< Baryc. coord 1 (corresponds to 2nd vertex). S3L_Unit barycentric2; ///< Baryc. coord 2 (corresponds to 3rd vertex). S3L_Index triangleID; } S3L_PixelInfo; static inline void S3L_initPixelInfo(S3L_PixelInfo *p) { p->x = 0; p->y = 0; p->barycentric0 = S3L_FRACTIONS_PER_UNIT; p->barycentric1 = 0; p->barycentric2 = 0; p->triangleID = 0; } #define S3L_BACKFACE_CULLING_NONE 0 #define S3L_BACKFACE_CULLING_CW 1 #define S3L_BACKFACE_CULLING_CCW 2 #define S3L_MODE_TRIANGLES 0 #define S3L_MODE_LINES 1 #define S3L_MODE_POINTS 2 typedef struct { int backfaceCulling; int mode; } S3L_DrawConfig; void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl typedef struct { int16_t steps; int16_t err; S3L_ScreenCoord x; S3L_ScreenCoord y; int16_t *majorCoord; int16_t *minorCoord; int16_t majorIncrement; int16_t minorIncrement; int16_t majorDiff; int16_t minorDiff; } S3L_BresenhamState; ///< State of drawing a line with Bresenham algorithm. /** Returns a value interpolated between the three triangle vertices based on barycentric coordinates. */ static inline S3L_Unit S3L_interpolateBarycentric( S3L_Unit value0, S3L_Unit value1, S3L_Unit value2, S3L_Unit barycentric0, S3L_Unit barycentric1, S3L_Unit barycentric2) { return ( (value0 * barycentric0) + (value1 * barycentric1) + (value2 * barycentric2) ) / S3L_FRACTIONS_PER_UNIT; } /** Interpolated between two values, v1 and v2, in the same ratio as t is to tMax. Does NOT prevent zero division. */ static inline int16_t S3L_interpolate(int16_t v1, int16_t v2, int16_t t, int16_t tMax) { return v1 + ((v2 - v1) * t) / tMax; } /** Same as S3L_interpolate but with v1 = 0. Should be faster. */ static inline int16_t S3L_interpolateFrom0(int16_t v2, int16_t t, int16_t tMax) { return (v2 * t) / tMax; } void S3L_bresenhamInit(S3L_BresenhamState *state, int16_t x0, int16_t y0, int16_t x1, int16_t y1) { int16_t dx = x1 - x0; int16_t dy = y1 - y0; int16_t absDx = S3L_abs(dx); int16_t absDy = S3L_abs(dy); if (absDx >= absDy) { state->majorCoord = &(state->x); state->minorCoord = &(state->y); state->minorDiff = 2 * absDy; state->majorDiff = 2 * absDx; state->err = 2 * dy - dx; state->majorIncrement = dx >= 0 ? 1 : -1; state->minorIncrement = dy >= 0 ? 1 : -1; state->steps = absDx; } else { state->majorCoord = &(state->y); state->minorCoord = &(state->x); state->minorDiff = 2 * absDx; state->majorDiff = 2 * absDy; state->err = 2 * dx - dy; state->majorIncrement = dy >= 0 ? 1 : -1; state->minorIncrement = dx >= 0 ? 1 : -1; state->steps = absDy; } state->x = x0; state->y = y0; } int S3L_bresenhamStep(S3L_BresenhamState *state) { state->steps--; (*state->majorCoord) += state->majorIncrement; if (state->err > 0) { (*state->minorCoord) += state->minorIncrement; state->err -= state->majorDiff; } state->err += state->minorDiff; return state->steps >= 0; } void S3L_drawTriangle( S3L_ScreenCoord x0, S3L_ScreenCoord y0, S3L_ScreenCoord x1, S3L_ScreenCoord y1, S3L_ScreenCoord x2, S3L_ScreenCoord y2, S3L_DrawConfig config, S3L_Index triangleID) { if (config.backfaceCulling != S3L_BACKFACE_CULLING_NONE) { int cw = // matrix determinant x0 * y1 + y0 * x2 + x1 * y2 - y1 * x2 - y0 * x1 - x0 * y2 > 0; if ((config.backfaceCulling == S3L_BACKFACE_CULLING_CW && !cw) || (config.backfaceCulling == S3L_BACKFACE_CULLING_CCW && cw)) return; } S3L_PixelInfo p; S3L_initPixelInfo(&p); p.triangleID = triangleID; if (config.mode == S3L_MODE_TRIANGLES) // triangle mode { S3L_ScreenCoord tPointX, tPointY, // top triangle point coords lPointX, lPointY, // left triangle point coords rPointX, rPointY; // right triangle point coords S3L_Unit *barycentric0; // bar. coord that gets higher from L to R S3L_Unit *barycentric1; // bar. coord that gets higher from R to L S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up // Sort the points. #define handleLR(t,a,b)\ int16_t aDx = x##a - x##t;\ int16_t bDx = x##b - x##t;\ int16_t aDy = S3L_nonZero(y##a - y##t);\ int16_t bDy = S3L_nonZero(y##b - y##t);\ if ((aDx << 4) / aDy < (bDx << 4) / bDy)\ /*if (x##a <= x##b)*/\ {\ lPointX = x##a; lPointY = y##a;\ rPointX = x##b; rPointY = y##b;\ barycentric0 = &p.barycentric##b;\ barycentric1 = &p.barycentric##a;\ }\ else\ {\ lPointX = x##b; lPointY = y##b;\ rPointX = x##a; rPointY = y##a;\ barycentric0 = &p.barycentric##a;\ barycentric1 = &p.barycentric##b;\ } if (y0 <= y1) { if (y0 <= y2) { tPointX = x0; tPointY = y0; barycentric2 = &p.barycentric0; handleLR(0,1,2) } else { tPointX = x2; tPointY = y2; barycentric2 = &p.barycentric2; handleLR(2,0,1) } } else { if (y1 <= y2) { tPointX = x1; tPointY = y1; barycentric2 = &p.barycentric1; handleLR(1,0,2) } else { tPointX = x2; tPointY = y2; barycentric2 = &p.barycentric2; handleLR(2,0,1) } } // Now draw the triangle line by line. #undef handleLR S3L_ScreenCoord splitY; // Y of the vertically middle point of the triangle S3L_ScreenCoord endY; // bottom Y of the whole triangle int splitOnLeft; // whether splitY happens on L or R side if (rPointY <= lPointY) { splitY = rPointY; splitOnLeft = 0; endY = lPointY; } else { splitY = lPointY; splitOnLeft = 1; endY = rPointY; } S3L_ScreenCoord currentY = tPointY; /* We'll be using an algorithm similar to Bresenham line algorithm. The specifics of this algorithm are among others: - drawing possibly a NON-CONTINUOUS line - NOT tracing the line exactly, but rather rasterizing on one (right) side of it, according to the pixel CENTERS The principle is this: - Move vertically by pixels and accumulate the error (abs(dx/dy)). - If the error is greater than one (crossed the next pixel center), keep moving horizontally and substracting 1 from the error until it is less than 1 again. - To make this INTEGER ONLY, scale the case so that distance between pixels is equal to dy (instead of 1). This way the error becomes dx/dy * dy == dx, and we're comparing the error to (and potentially substracting) 1 * dy == dy. */ int16_t /* triangle side: left right */ lX, rX, // current x position lDx, rDx, // dx (end point - start point) lDy, rDy, // dy (end point - start point) lInc, rInc, // direction in which to increment (1 or -1) lErr, rErr, // current error (Bresenham) lErrAdd, rErrAdd, // error value to add in each Bresenham cycle lErrSub, rErrSub; // error value to substract when moving in x direction S3L_Unit lSideUnitStep, rSideUnitStep, lSideUnitPos, rSideUnitPos; /* init side for the algorithm, params: s - which side (l or r) p1 - point from (t, l or r) p2 - point to (t, l or r) down - whether the side coordinate goes top-down or vice versa */ #define initSide(s,p1,p2,down)\ s##X = p1##PointX;\ s##Dx = p2##PointX - p1##PointX;\ s##Dy = p2##PointY - p1##PointY;\ s##SideUnitStep = S3L_FRACTIONS_PER_UNIT / (s##Dy != 0 ? s##Dy : 1);\ s##SideUnitPos = 0;\ if (!down)\ {\ s##SideUnitPos = S3L_FRACTIONS_PER_UNIT;\ s##SideUnitStep *= -1;\ }\ s##Inc = s##Dx >= 0 ? 1 : -1;\ s##Err = (s##Dx < 0) ? 0 : s##Dy;\ s##ErrAdd = S3L_abs(s##Dx);\ s##ErrSub = s##Dy != 0 ? s##Dy : 1; /* don't allow 0, could lead to an infinite substracting loop */ #define stepSide(s)\ while (s##Err > s##Dy)\ {\ s##X += s##Inc;\ s##Err -= s##ErrSub;\ }\ s##Err += s##ErrAdd; initSide(r,t,r,1) initSide(l,t,l,1) while (currentY < endY) /* draw the triangle from top to bottom -- the bottom-most row is left out because, following from the rasterization rules (see top of the source), it is to never be rasterized. */ { if (currentY == splitY) // reached a vertical split of the triangle? { // then reinit one side if (splitOnLeft) { initSide(l,l,r,0); S3L_Unit *tmp = barycentric0; barycentric0 = barycentric2; barycentric2 = tmp; rSideUnitPos = S3L_FRACTIONS_PER_UNIT - rSideUnitPos; rSideUnitStep *= -1; } else { initSide(r,r,l,0); S3L_Unit *tmp = barycentric1; barycentric1 = barycentric2; barycentric2 = tmp; lSideUnitPos = S3L_FRACTIONS_PER_UNIT - lSideUnitPos; lSideUnitStep *= -1; } } stepSide(r) stepSide(l) p.y = currentY; // draw the horizontal line S3L_Unit tMax = rX - lX; tMax = S3L_NONZERO(tMax); // prevent division by zero S3L_Unit t1 = 0; S3L_Unit t2 = tMax; for (S3L_ScreenCoord x = lX; x < rX; ++x) { *barycentric0 = S3L_interpolateFrom0(rSideUnitPos,t1,tMax); *barycentric1 = S3L_interpolateFrom0(lSideUnitPos,t2,tMax); *barycentric2 = S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1; p.x = x; S3L_PIXEL_FUNCTION(&p); ++t1; --t2; } lSideUnitPos += lSideUnitStep; rSideUnitPos += rSideUnitStep; ++currentY; } #undef initSide #undef stepSide } else if (config.mode == S3L_MODE_LINES) // line mode { S3L_BresenhamState line; S3L_Unit lineLen; #define drawLine(p1,p2)\ S3L_bresenhamInit(&line,x##p1,y##p1,x##p2,y##p2);\ p.barycentric0 = 0;\ p.barycentric1 = 0;\ p.barycentric2 = 0;\ lineLen = S3L_nonZero(line.steps);\ do\ {\ p.x = line.x; p.y = line.y;\ p.barycentric##p1 = S3L_interpolateFrom0(\ S3L_FRACTIONS_PER_UNIT,line.steps,lineLen); \ p.barycentric##p2 = S3L_FRACTIONS_PER_UNIT - p.barycentric##p1;\ S3L_PIXEL_FUNCTION(&p);\ } while (S3L_bresenhamStep(&line)); drawLine(0,1) drawLine(2,0) drawLine(1,2) #undef drawLine } else // point mode { p.x = x0; p.y = y0; p.barycentric0 = S3L_FRACTIONS_PER_UNIT; p.barycentric1 = 0; p.barycentric2 = 0; S3L_PIXEL_FUNCTION(&p); p.x = x1; p.y = y1; p.barycentric0 = 0; p.barycentric1 = S3L_FRACTIONS_PER_UNIT; p.barycentric2 = 0; S3L_PIXEL_FUNCTION(&p); p.x = x2; p.y = y2; p.barycentric0 = 0; p.barycentric1 = 0; p.barycentric2 = S3L_FRACTIONS_PER_UNIT; S3L_PIXEL_FUNCTION(&p); } } static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle) { if (angle < S3L_SIN_TABLE_UNIT_STEP) return; // no visible rotation S3L_Unit angleSin = S3L_sin(angle); S3L_Unit angleCos = S3L_cos(angle); S3L_Unit xBackup = *x; *x = (angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT - (angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT; *y = (angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT + (angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT; } void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m) { S3L_makeScaleMatrix( worldTransform.scale.x, worldTransform.scale.y, worldTransform.scale.z, m ); S3L_Mat4 t; S3L_makeRotationMatrix( worldTransform.rotation.x, worldTransform.rotation.y, worldTransform.rotation.z, &t); S3L_mat4Xmat4(m,&t); S3L_makeTranslationMat( worldTransform.translation.x, worldTransform.translation.y, worldTransform.translation.z, &t); S3L_mat4Xmat4(m,&t); } void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m) { S3L_makeTranslationMat( -1 * cameraTransform.translation.x, -1 * cameraTransform.translation.y, -1 * cameraTransform.translation.z, m); } static inline void S3L_mapCameraToScreen(S3L_Vec4 point, S3L_Camera *camera, S3L_ScreenCoord *screenX, S3L_ScreenCoord *screenY) { uint16_t halfW = camera->resolutionX >> 1; // TODO: precompute earlier? uint16_t halfH = camera->resolutionY >> 1; *screenX = halfW + (point.x * halfW) / point.z; *screenY = halfH - (point.y * halfW) / point.z; // ^ S3L_FRACTIONS_PER_UNIT cancel out } void S3L_drawModel( const S3L_Unit coords[], const S3L_Index triangleVertexIndices[], uint16_t triangleCount, S3L_Transform3D modelTransform, S3L_Camera camera, S3L_DrawConfig config) { S3L_Index triangleIndex = 0; S3L_Index coordIndex = 0; S3L_ScreenCoord sX0, sY0, sX1, sY1, sX2, sY2; S3L_Vec4 pointModel; S3L_Unit indexIndex; pointModel.w = S3L_FRACTIONS_PER_UNIT; // has to be "1.0" for translation S3L_Mat4 mat1, mat2; S3L_makeWorldMatrix(modelTransform,&mat1); S3L_makeCameraMatrix(camera.transform,&mat2); S3L_mat4Xmat4(&mat1,&mat2); while (triangleIndex < triangleCount) { #define mapCoords(n)\ indexIndex = triangleVertexIndices[coordIndex] * 3;\ pointModel.x = coords[indexIndex];\ ++indexIndex; /* TODO: put into square brackets? */\ pointModel.y = coords[indexIndex];\ ++indexIndex;\ pointModel.z = coords[indexIndex];\ ++coordIndex;\ S3L_vec4Xmat4(&pointModel,&mat1);\ S3L_mapCameraToScreen(pointModel,&camera,&sX##n,&sY##n); mapCoords(0) mapCoords(1) mapCoords(2) S3L_drawTriangle(sX0,sY0,sX1,sY1,sX2,sY2,config,triangleIndex); ++triangleIndex; } } #endif