#define S3L_RESOLUTION_X 1280 #define S3L_RESOLUTION_Y 1024 #define S3L_PIXEL_FUNCTION drawPixel #define S3L_PERSPECTIVE_CORRECTION 1 #define S3L_SORT 0 #define S3L_Z_BUFFER 1 #include "../small3dlib.h" #include #include uint8_t frameBuffer[S3L_RESOLUTION_X * S3L_RESOLUTION_Y * 3]; #define GRID_W 16 #define GRID_H 16 int8_t heightMap[GRID_W * GRID_H] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,1,1,1,0,0,0,0,0, 0,0,0,0,0,1,0,1,3,3,1,1,0,0,0,0, 0,0,0,1,1,1,1,3,3,4,2,1,1,0,0,0, 0,0,0,0,1,1,3,4,4,6,5,2,1,1,0,0, 0,0,1,2,2,3,4,4,4,6,6,4,3,1,0,0, 0,1,2,4,5,5,6,6,6,6,6,5,5,3,1,0, 0,0,2,4,6,7,8,7,7,6,6,6,6,6,2,0, 0,0,3,4,7,8,8,9,8,7,6,6,6,6,2,0, 0,0,0,2,4,7,7,7,7,6,6,6,4,3,0,0, 0,0,0,1,3,6,6,6,6,6,6,6,2,0,0,0, 0,0,0,0,3,6,6,6,6,6,6,2,0,0,0,0, 0,0,0,1,1,2,3,5,5,5,2,0,0,0,0,0, 0,0,1,2,0,0,2,4,4,2,2,0,0,0,0,0, 0,0,0,0,0,0,1,3,3,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; #define GRID_TRIANGLES ((GRID_W - 1) * (GRID_H - 1) * 2) S3L_Unit terrainVertices[GRID_W * GRID_H * 3]; S3L_Unit terrainNormals[GRID_W * GRID_H * 3]; S3L_Unit waterVertices[GRID_W * GRID_H * 3]; S3L_Unit waterNormals[GRID_W * GRID_H * 3]; S3L_Index gridTriangles[GRID_TRIANGLES * 3]; #define MODELS 2 S3L_Model3D models[MODELS]; S3L_Scene scene; int previousTriangle = -1; S3L_Vec4 lightDirection; S3L_Vec4 n0, n1, n2; void drawPixel(S3L_PixelInfo *p) { S3L_Unit *normals = p->modelIndex == 0 ? terrainNormals : waterNormals; if (p->triangleIndex != previousTriangle) { int index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3] * 3; n0.x = normals[index]; index++; n0.y = normals[index]; index++; n0.z = normals[index]; index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3 + 1] * 3; n1.x = normals[index]; index++; n1.y = normals[index]; index++; n1.z = normals[index]; index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3 + 2] * 3; n2.x = normals[index]; index++; n2.y = normals[index]; index++; n2.z = normals[index]; } S3L_Vec4 normal; normal.x = S3L_interpolateBarycentric(n0.x, n1.x, n2.x, p->barycentric[0], p->barycentric[1], p->barycentric[2]); normal.y = S3L_interpolateBarycentric(n0.y, n1.y, n2.y, p->barycentric[0], p->barycentric[1], p->barycentric[2]); normal.z = S3L_interpolateBarycentric(n0.z, n1.z, n2.z, p->barycentric[0], p->barycentric[1], p->barycentric[2]); S3L_normalizeVec3(&normal); uint8_t light = 127 - 127 * (S3L_dotProductVec3(lightDirection,normal) / ((float) S3L_FRACTIONS_PER_UNIT)); uint8_t color[3]; int index = (p->y * S3L_RESOLUTION_X + p->x) * 3; if (p->modelIndex == MODELS - 1) { S3L_Unit waterDepth = p->previousZ - p->depth; float transparency = waterDepth / ((float) (S3L_FRACTIONS_PER_UNIT / 2)); transparency = transparency > 1.0 ? 1.0 : transparency; float transparency2 = 1.0 - transparency; uint8_t previousColor[3]; previousColor[0] = frameBuffer[index]; previousColor[1] = frameBuffer[index + 1]; previousColor[2] = frameBuffer[index + 2]; color[0] = transparency2 * previousColor[0]; color[1] = transparency2 * previousColor[1]; color[2] = transparency2 * previousColor[2] + transparency * 200; } else { color[0] = light; color[1] = light; color[2] = light / 2 + p->modelIndex * 127; } frameBuffer[index] = color[0]; frameBuffer[index + 1] = color[1]; frameBuffer[index + 2] = color[2]; } void createGeometry() { int i = 0; for (int y = 0; y < GRID_H; ++y) for (int x = 0; x < GRID_W; ++x) { terrainVertices[i] = (x - GRID_W / 2) * S3L_FRACTIONS_PER_UNIT; terrainVertices[i + 1] = heightMap[i / 3] * S3L_FRACTIONS_PER_UNIT / 4; terrainVertices[i + 2] = (y - GRID_H / 2) * S3L_FRACTIONS_PER_UNIT; waterVertices[i] = terrainVertices[i] * 2; waterVertices[i + 1] = 0; waterVertices[i + 2] = terrainVertices[i + 2] * 2; i += 3; } i = 0; for (int y = 0; y < GRID_H - 1; ++y) for (int x = 0; x < GRID_W - 1; ++x) { S3L_Index indices[4]; indices[0] = y * GRID_W + x; indices[1] = indices[0] + 1; indices[2] = indices[0] + GRID_W; indices[3] = indices[2] + 1; gridTriangles[i + 0] = indices[0]; gridTriangles[i + 1] = indices[1]; gridTriangles[i + 2] = indices[2]; gridTriangles[i + 3] = indices[2]; gridTriangles[i + 4] = indices[1]; gridTriangles[i + 5] = indices[3]; i += 6; } } void animateWater(int t) { for (int i = 1; i < GRID_W * GRID_H * 3; i += 3) waterVertices[i] = S3L_FRACTIONS_PER_UNIT / 2 + sin(i) * S3L_FRACTIONS_PER_UNIT / 4; S3L_computeModelNormals(models[MODELS - 1],waterNormals,0); } void clearFrameBuffer() { memset(frameBuffer,0,S3L_RESOLUTION_X * S3L_RESOLUTION_Y * 3 * sizeof(uint8_t)); } void saveImage(char *fileName) { printf("saving image file: %s",fileName); FILE *f = fopen(fileName,"w"); fprintf(f,"P3\n%d %d\n255\n",S3L_RESOLUTION_X,S3L_RESOLUTION_Y); for (int i = 0; i < S3L_RESOLUTION_X * S3L_RESOLUTION_Y * 3; i += 3) fprintf(f,"%d %d %d\n",frameBuffer[i],frameBuffer[i + 1],frameBuffer[i + 2]); fclose(f); } int main() { createGeometry(); lightDirection.x = 10; lightDirection.y = 10; lightDirection.z = 10; lightDirection.w = 0; S3L_normalizeVec3(&lightDirection); S3L_initModel3D( terrainVertices, GRID_W * GRID_H, gridTriangles, GRID_TRIANGLES, &(models[0])); S3L_computeModelNormals(models[0],terrainNormals,0); S3L_initModel3D( waterVertices, GRID_W * GRID_H, gridTriangles, GRID_TRIANGLES, &(models[MODELS - 1])); S3L_initScene(models,MODELS,&scene); animateWater(0); scene.camera.transform.translation.x = 4 * S3L_FRACTIONS_PER_UNIT; scene.camera.transform.translation.y = 6 * S3L_FRACTIONS_PER_UNIT; scene.camera.transform.translation.z = -7 * S3L_FRACTIONS_PER_UNIT; scene.camera.transform.rotation.x = -S3L_FRACTIONS_PER_UNIT / 8; scene.camera.transform.rotation.y = -S3L_FRACTIONS_PER_UNIT / 8; clearFrameBuffer(); S3L_newFrame(); S3L_drawScene(scene); saveImage("test.ppm"); return 0; }