/* WIP Simple realtime 3D software rasterization library. It is fast, focused on resource-limited computers, located in a single C header file, with no dependencies, using only integer arithmetic. author: Miloslav Ciz license: CC0 1.0 -------------------- CONVENTIONS: Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs. COORDINATE SYSTEMS: In 3D space, a left-handed coord. system is used. One spatial unit is split into S3L_FRACTIONS_PER_UNIT fractions. y ^ | _ | /| z | / | / [0,0,0]-------> x Untransformed camera is placed at [0,0,0], looking forward along +z axis. The projection plane is centered at [0,0,0], stretrinch from -S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x), vertical size (y) depends on the camera aspect ratio. Camera FOV is defined by focal length. y ^ | _ | /| z ____|_/__ | |/ | -----[0,0,0]-|-----> x |____|____| | | Coordinates of pixels on screen start typically at the top left. */ #ifndef S3L_H #define S3L_H #include typedef int16_t S3L_Unit; /**< Units of measurement in 3D space. There is S3L_FRACTIONS_PER_UNIT in one spatial unit. By dividing the unit into fractions we effectively achieve fixed point arithmetic. The number of fractions is a constant that serves as 1.0 in floating point arithmetic (normalization etc.). */ #define S3L_FRACTIONS_PER_UNIT 1024 #define S3L_SIN_TABLE_LENGTH 128 static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] = { 0, 12, 25, 37, 50, 62, 75, 87, 100, 112, 125, 137, 150, 162, 175, 187, 199, 212, 224, 236, 248, 260, 273, 285, 297, 309, 321, 333, 344, 356, 368, 380, 391, 403, 414, 426, 437, 449, 460, 471, 482, 493, 504, 515, 526, 537, 547, 558, 568, 579, 589, 599, 609, 620, 629, 639, 649, 659, 668, 678, 687, 696, 706, 715, 724, 732, 741, 750, 758, 767, 775, 783, 791, 799, 807, 814, 822, 829, 837, 844, 851, 858, 865, 871, 878, 884, 890, 897, 903, 908, 914, 920, 925, 930, 936, 941, 946, 950, 955, 959, 964, 968, 972, 976, 979, 983, 986, 990, 993, 996, 999, 1001, 1004, 1006, 1008, 1010, 1012, 1014, 1016, 1017, 1019, 1020, 1021, 1022, 1022, 1023, 1023, 1023 }; #define S3L_SIN_TABLE_UNIT_STEP\ (S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4)) typedef int16_t S3L_ScreenCoord; typedef uint16_t S3L_Index; typedef struct { S3L_Unit x; S3L_Unit y; S3L_Unit z; } S3L_Vec3; static inline void S3L_initVec3(S3L_Vec3 *v) { v->x = 0; v->y = 0; v->z = 0; } typedef struct { S3L_Vec3 offset; S3L_Vec3 rotation; /**< Euler angles. Rortation is applied in this order: 1. z = around z (roll) CW looking along z+ 2. x = around x (pitch) CW looking along x+ 3. y = around y (yaw) CW looking along y+ */ S3L_Vec3 scale; } S3L_Transform3D; static inline void S3L_initTransoform3D(S3L_Transform3D *t) { S3L_initVec3(&(t->offset)); S3L_initVec3(&(t->rotation)); t->scale.x = S3L_FRACTIONS_PER_UNIT; t->scale.y = S3L_FRACTIONS_PER_UNIT; t->scale.z = S3L_FRACTIONS_PER_UNIT; } typedef struct { uint16_t resolutionX; uint16_t resolutionY; S3L_Unit focalLength; ///< Defines the field of view (FOV). S3L_Transform3D transform; } S3L_Camera; static inline void S3L_initCamera(S3L_Camera *c) { c->resolutionX = 128; c->resolutionY = 64; c->focalLength = S3L_FRACTIONS_PER_UNIT; S3L_initTransoform3D(&(c->transform)); } typedef struct { S3L_ScreenCoord x; ///< Screen X coordinate. S3L_ScreenCoord y; ///< Screen Y coordinate. S3L_Unit barycentric0; /**< Barycentric coord 0 (corresponds to 1st vertex). Together with 1 and 2 coords these serve to locate the pixel on a triangle and interpolate values between it's three points. The sum of the three coordinates will always be exactly S3L_FRACTIONS_PER_UNIT. */ S3L_Unit barycentric1; ///< Baryc. coord 1 (corresponds to 2nd vertex). S3L_Unit barycentric2; ///< Baryc. coord 2 (corresponds to 3rd vertex). S3L_Index triangleID; } S3L_PixelInfo; static inline void S3L_initPixelInfo(S3L_PixelInfo *p) { p->x = 0; p->y = 0; p->barycentric0 = S3L_FRACTIONS_PER_UNIT; p->barycentric1 = 0; p->barycentric2 = 0; p->triangleID = 0; } #define S3L_BACKFACE_CULLING_NONE 0 #define S3L_BACKFACE_CULLING_CW 1 #define S3L_BACKFACE_CULLING_CCW 2 #define S3L_MODE_TRIANGLES 0 #define S3L_MODE_LINES 1 #define S3L_MODE_POINTS 2 typedef struct { int backfaceCulling; int mode; } S3L_DrawConfig; void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl typedef struct { int16_t steps; int16_t err; S3L_ScreenCoord x; S3L_ScreenCoord y; int16_t *majorCoord; int16_t *minorCoord; int16_t majorIncrement; int16_t minorIncrement; int16_t majorDiff; int16_t minorDiff; } S3L_BresenhamState; ///< State of drawing a line with Bresenham algorithm. /** Returns a value interpolated between the three triangle vertices based on barycentric coordinates. */ static inline S3L_Unit S3L_interpolateBarycentric( S3L_Unit value0, S3L_Unit value1, S3L_Unit value2, S3L_Unit barycentric0, S3L_Unit barycentric1, S3L_Unit barycentric2) { return ( (value0 * barycentric0) + (value1 * barycentric1) + (value2 * barycentric2) ) / S3L_FRACTIONS_PER_UNIT; } // general helper functions static inline int16_t S3L_abs(int16_t value) { return value >= 0 ? value : -1 * value; } static inline int16_t S3L_min(int16_t v1, int16_t v2) { return v1 >= v2 ? v2 : v1; } static inline int16_t S3L_max(int16_t v1, int16_t v2) { return v1 >= v2 ? v1 : v2; } static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod) { return value >= 0 ? (value % mod) : (mod + (value % mod) - 1); } static inline S3L_Unit S3L_nonZero(S3L_Unit value) { return value != 0 ? value : 1; } static inline S3L_Unit S3L_sin(S3L_Unit x) { x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4); int8_t positive = 1; if (x < S3L_SIN_TABLE_LENGTH) x = x; else if (x < S3L_SIN_TABLE_LENGTH * 2) x = S3L_SIN_TABLE_LENGTH * 2 - x - 1; else if (x < S3L_SIN_TABLE_LENGTH * 3) { x = x - S3L_SIN_TABLE_LENGTH * 2; positive = 0; } else { x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1; positive = 0; } return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x]; } static inline S3L_Unit S3L_cos(S3L_Unit x) { return S3L_sin(x - S3L_FRACTIONS_PER_UNIT / 4); } /** Interpolated between two values, v1 and v2, in the same ratio as t is to tMax. Does NOT prevent zero division. */ static inline int16_t S3L_interpolate(int16_t v1, int16_t v2, int16_t t, int16_t tMax) { return v1 + ((v2 - v1) * t) / tMax; } /** Same as S3L_interpolate but with v1 = 0. Should be faster. */ static inline int16_t S3L_interpolateFrom0(int16_t v2, int16_t t, int16_t tMax) { return (v2 * t) / tMax; } void S3L_bresenhamInit(S3L_BresenhamState *state, int16_t x0, int16_t y0, int16_t x1, int16_t y1) { int16_t dx = x1 - x0; int16_t dy = y1 - y0; int16_t absDx = S3L_abs(dx); int16_t absDy = S3L_abs(dy); if (absDx >= absDy) { state->majorCoord = &(state->x); state->minorCoord = &(state->y); state->minorDiff = 2 * absDy; state->majorDiff = 2 * absDx; state->err = 2 * dy - dx; state->majorIncrement = dx >= 0 ? 1 : -1; state->minorIncrement = dy >= 0 ? 1 : -1; state->steps = absDx; } else { state->majorCoord = &(state->y); state->minorCoord = &(state->x); state->minorDiff = 2 * absDx; state->majorDiff = 2 * absDy; state->err = 2 * dx - dy; state->majorIncrement = dy >= 0 ? 1 : -1; state->minorIncrement = dx >= 0 ? 1 : -1; state->steps = absDy; } state->x = x0; state->y = y0; } int S3L_bresenhamStep(S3L_BresenhamState *state) { state->steps--; (*state->majorCoord) += state->majorIncrement; if (state->err > 0) { (*state->minorCoord) += state->minorIncrement; state->err -= state->majorDiff; } state->err += state->minorDiff; return state->steps >= 0; } void S3L_drawTriangle( S3L_ScreenCoord x0, S3L_ScreenCoord y0, S3L_ScreenCoord x1, S3L_ScreenCoord y1, S3L_ScreenCoord x2, S3L_ScreenCoord y2, S3L_DrawConfig config, S3L_Index triangleID) { if (config.backfaceCulling != S3L_BACKFACE_CULLING_NONE) { int cw = // matrix determinant x0 * y1 + y0 * x2 + x1 * y2 - y1 * x2 - y0 * x1 - x0 * y2 > 0; if ((config.backfaceCulling == S3L_BACKFACE_CULLING_CW && !cw) || (config.backfaceCulling == S3L_BACKFACE_CULLING_CCW && cw)) return; } S3L_PixelInfo p; S3L_initPixelInfo(&p); p.triangleID = triangleID; // point mode if (config.mode == S3L_MODE_POINTS) { p.x = x0; p.y = y0; p.barycentric0 = S3L_FRACTIONS_PER_UNIT; p.barycentric1 = 0; p.barycentric2 = 0; S3L_PIXEL_FUNCTION(&p); p.x = x1; p.y = y1; p.barycentric0 = 0; p.barycentric1 = S3L_FRACTIONS_PER_UNIT; p.barycentric2 = 0; S3L_PIXEL_FUNCTION(&p); p.x = x2; p.y = y2; p.barycentric0 = 0; p.barycentric1 = 0; p.barycentric2 = S3L_FRACTIONS_PER_UNIT; S3L_PIXEL_FUNCTION(&p); return; } // line mode if (config.mode == S3L_MODE_LINES) { S3L_BresenhamState line; S3L_Unit lineLen; #define drawLine(p1,p2)\ S3L_bresenhamInit(&line,x##p1,y##p1,x##p2,y##p2);\ p.barycentric0 = 0;\ p.barycentric1 = 0;\ p.barycentric2 = 0;\ lineLen = S3L_nonZero(line.steps);\ do\ {\ p.x = line.x; p.y = line.y;\ p.barycentric##p1 = S3L_interpolateFrom0(\ S3L_FRACTIONS_PER_UNIT,line.steps,lineLen); \ p.barycentric##p2 = S3L_FRACTIONS_PER_UNIT - p.barycentric##p1;\ S3L_PIXEL_FUNCTION(&p);\ } while (S3L_bresenhamStep(&line)); drawLine(0,1) drawLine(2,0) drawLine(1,2) #undef drawLine return; } // triangle mode S3L_ScreenCoord tPointX, tPointY, // top triangle point coords lPointX, lPointY, // left triangle point coords rPointX, rPointY; // right triangle point coords S3L_Unit *barycentric0; // bar. coord that gets higher from L to R S3L_Unit *barycentric1; // bar. coord that gets higher from R to L S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up // Sort the points. #define handleLR(t,a,b)\ int16_t aDx = x##a - x##t;\ int16_t bDx = x##b - x##t;\ int16_t aDy = S3L_nonZero(y##a - y##t);\ int16_t bDy = S3L_nonZero(y##b - y##t);\ if ((aDx << 4) / aDy < (bDx << 4) / bDy)\ /*if (x##a <= x##b)*/\ {\ lPointX = x##a; lPointY = y##a;\ rPointX = x##b; rPointY = y##b;\ barycentric0 = &p.barycentric##b;\ barycentric1 = &p.barycentric##a;\ }\ else\ {\ lPointX = x##b; lPointY = y##b;\ rPointX = x##a; rPointY = y##a;\ barycentric0 = &p.barycentric##a;\ barycentric1 = &p.barycentric##b;\ } if (y0 <= y1) { if (y0 <= y2) { tPointX = x0; tPointY = y0; barycentric2 = &p.barycentric0; handleLR(0,1,2) } else { tPointX = x2; tPointY = y2; barycentric2 = &p.barycentric2; handleLR(2,0,1) } } else { if (y1 <= y2) { tPointX = x1; tPointY = y1; barycentric2 = &p.barycentric1; handleLR(1,0,2) } else { tPointX = x2; tPointY = y2; barycentric2 = &p.barycentric2; handleLR(2,0,1) } } // Now draw the triangle line by line. #undef handleLR S3L_ScreenCoord splitY; // Y at which one side (L or R) changes S3L_ScreenCoord endY; // bottom Y of the whole triangle int splitOnLeft; // whether split happens on L or R if (rPointY <= lPointY) { splitY = rPointY; splitOnLeft = 0; endY = lPointY; } else { splitY = lPointY; splitOnLeft = 1; endY = rPointY; } S3L_ScreenCoord currentY = tPointY; /* We'll be using a slight modification of Bresenham line algorithm (a one that draws a _non-continous_ line). */ int16_t /* triangle side: left right */ lX, rX, // current x position lDx, rDx, // dx (end point - start point) lDy, rDy, // dy (end point - start point) lInc, rInc, // direction in which to increment (1 or -1) lErr, rErr, // current error (Bresenham) lErrAdd, rErrAdd, // error value to add in each Bresenham cycle lErrSub, rErrSub; // error value to substract when moving in x direction S3L_Unit lSideUnitStep, rSideUnitStep, lSideUnitPos, rSideUnitPos; int16_t helperDxAbs; #define initSide(v,p1,p2, down)\ v##X = p1##PointX;\ v##Dx = p2##PointX - p1##PointX;\ v##Dy = p2##PointY - p1##PointY;\ v##SideUnitStep = S3L_FRACTIONS_PER_UNIT / (v##Dy != 0 ? v##Dy : 1);\ v##SideUnitPos = 0;\ if (!down)\ {\ v##SideUnitPos = S3L_FRACTIONS_PER_UNIT;\ v##SideUnitStep *= -1;\ }\ helperDxAbs = S3L_abs(v##Dx);\ v##Inc = v##Dx >= 0 ? 1 : -1;\ v##Err = 2 * helperDxAbs - v##Dy;\ v##ErrAdd = 2 * helperDxAbs;\ v##ErrSub = 2 * v##Dy;\ v##ErrSub = v##ErrSub != 0 ? v##ErrSub : 1; /* don't allow 0, could lead to an infinite substracting loop */ #define stepSide(s)\ while (s##Err > 0)\ {\ s##X += s##Inc;\ s##Err -= s##ErrSub;\ }\ s##Err += s##ErrAdd; initSide(r,t,r,1) initSide(l,t,l,1) while (currentY <= endY) { if (currentY == splitY) { if (splitOnLeft) { initSide(l,l,r,0); S3L_Unit *tmp = barycentric0; barycentric0 = barycentric2; barycentric2 = tmp; rSideUnitPos = S3L_FRACTIONS_PER_UNIT - rSideUnitPos; rSideUnitStep *= -1; } else { initSide(r,r,l,0); S3L_Unit *tmp = barycentric1; barycentric1 = barycentric2; barycentric2 = tmp; lSideUnitPos = S3L_FRACTIONS_PER_UNIT - lSideUnitPos; lSideUnitStep *= -1; } } p.y = currentY; // draw the line S3L_Unit tMax = rX - lX; tMax = tMax != 0 ? tMax : 1; // prevent division by zero S3L_Unit t1 = 0; S3L_Unit t2 = tMax; for (S3L_ScreenCoord x = lX; x <= rX; ++x) { *barycentric0 = S3L_interpolateFrom0(rSideUnitPos,t1,tMax); *barycentric1 = S3L_interpolateFrom0(lSideUnitPos,t2,tMax); *barycentric2 = S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1; p.x = x; S3L_PIXEL_FUNCTION(&p); ++t1; --t2; } stepSide(r) stepSide(l) lSideUnitPos += lSideUnitStep; rSideUnitPos += rSideUnitStep; ++currentY; } #undef initSide #undef stepSide } static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle) { if (angle < S3L_SIN_TABLE_UNIT_STEP) return; // no visible rotation S3L_Unit angleSin = S3L_sin(angle); S3L_Unit angleCos = S3L_cos(angle); S3L_Unit xBackup = *x; *x = (angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT - (angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT; *y = (angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT + (angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT; } // FIXME: rewrite this to just apply one matrix, EFFICIENCY!!! static inline void S3L_mapModelToWorld(S3L_Vec3 point, S3L_Transform3D *modelTransform, S3L_Vec3 *newPoint) { newPoint->x = point.x; newPoint->y = point.y; newPoint->z = point.z; S3L_rotate2DPoint(&(newPoint->x),&(newPoint->y),modelTransform->rotation.z); S3L_rotate2DPoint(&(newPoint->z),&(newPoint->y),modelTransform->rotation.x); S3L_rotate2DPoint(&(newPoint->z),&(newPoint->x),modelTransform->rotation.y); newPoint->x += modelTransform->offset.x; newPoint->y += modelTransform->offset.y; newPoint->z += modelTransform->offset.z; } static inline void S3L_mapWorldToCamera(S3L_Vec3 point, S3L_Transform3D *cameraTransform, S3L_Vec3 *newPoint) { newPoint->x = point.x - cameraTransform->offset.x; newPoint->y = point.y - cameraTransform->offset.y; newPoint->z = point.z - cameraTransform->offset.z; } static inline void S3L_mapCameraToScreen(S3L_Vec3 point, S3L_Camera *camera, S3L_ScreenCoord *screenX, S3L_ScreenCoord *screenY) { uint16_t halfW = camera->resolutionX >> 1; // TODO: precompute earlier? uint16_t halfH = camera->resolutionY >> 1; *screenX = halfW + (point.x * halfW) / point.z; *screenY = halfH - (point.y * halfW) / point.z; // ^ S3L_FRACTIONS_PER_UNIT cancel out } void S3L_drawModel( const S3L_Unit coords[], const S3L_Index triangleVertexIndices[], uint16_t triangleCount, S3L_Transform3D modelTransform, S3L_Camera camera, S3L_DrawConfig config) { S3L_Index triangleIndex = 0; S3L_Index coordIndex = 0; S3L_ScreenCoord sX0, sY0, sX1, sY1, sX2, sY2; S3L_Vec3 pointModel, pointWorld, pointCamera; S3L_Unit indexIndex; while (triangleIndex < triangleCount) { #define mapCoords(n)\ indexIndex = triangleVertexIndices[coordIndex] * 3;\ pointModel.x = coords[indexIndex];\ ++indexIndex; /* TODO: put into square brackets? */\ pointModel.y = coords[indexIndex];\ ++indexIndex;\ pointModel.z = coords[indexIndex];\ ++coordIndex;\ S3L_mapModelToWorld(pointModel,&modelTransform,&pointWorld);\ S3L_mapWorldToCamera(pointWorld,&camera.transform,&pointCamera);\ S3L_mapCameraToScreen(pointCamera,&camera,&sX##n,&sY##n); mapCoords(0) mapCoords(1) mapCoords(2) S3L_drawTriangle(sX0,sY0,sX1,sY1,sX2,sY2,config,triangleIndex); ++triangleIndex; } } #endif