/* Example for small3dlib: model viewer. author: Miloslav Ciz license: CC0 */ #include #include #include #include #include #define S3L_FLAT 0 #define S3L_STRICT_NEAR_CULLING 1 #define S3L_PERSPECTIVE_CORRECTION 2 #define S3L_SORT 0 #define S3L_STENCIL_BUFFER 0 #define S3L_Z_BUFFER 1 #define S3L_PIXEL_FUNCTION drawPixel #define S3L_RESOLUTION_X 800 #define S3L_RESOLUTION_Y 600 #include "../small3dlib.h" #include "houseTexture.h" #include "houseModel.h" #include "chestTexture.h" #include "chestModel.h" #include "plantTexture.h" #include "plantModel.h" #include "cat1Model.h" #include "cat2Model.h" #include "catTexture.h" #define TEXTURE_W 128 #define TEXTURE_H 128 S3L_Unit houseNormals[HOUSE_VERTEX_COUNT * 3]; S3L_Unit chestNormals[CHEST_VERTEX_COUNT * 3]; S3L_Unit catNormals[CAT1_VERTEX_COUNT * 3]; S3L_Unit plantNormals[PLANT_VERTEX_COUNT * 3]; S3L_Unit catVertices[CAT1_VERTEX_COUNT * 3]; const S3L_Index *catTriangleIndices = cat1TriangleIndices; const S3L_Index *catUVs = cat1UVs; const S3L_Index *catUVIndices = cat1UVIndices; S3L_Model3D catModel; S3L_Model3D model; uint8_t *texture; const S3L_Unit *uvs; const S3L_Unit *normals; const S3L_Index *uvIndices; S3L_Scene scene; uint32_t pixels[S3L_RESOLUTION_X * S3L_RESOLUTION_Y]; uint32_t frame = 0; void clearScreen() { memset(pixels,200,S3L_RESOLUTION_X * S3L_RESOLUTION_Y * sizeof(uint32_t)); } static inline void setPixel(int x, int y, uint8_t red, uint8_t green, uint8_t blue) { if (x < 0 || x >= S3L_RESOLUTION_X || y < 0 || y >= S3L_RESOLUTION_Y) return; uint32_t r = red & 0x000000FF; r = r << 24; uint32_t g = green & 0x000000FF; g = g << 16; uint32_t b = blue & 0x000000FF; b = b << 8; pixels[y * S3L_RESOLUTION_X + x] = r | g | b; } void sampleTexture(int32_t u, int32_t v, uint8_t *r, uint8_t *g, uint8_t *b) { u = S3L_clamp(u,0,TEXTURE_W - 1); v = S3L_clamp(v,0,TEXTURE_H - 1); int32_t index = (v * TEXTURE_W + u) * 3; *r = texture[index]; index++; *g = texture[index]; index++; *b = texture[index]; } void animate(double time) { time = (1.0 + sin(time * 8)) / 2; S3L_Unit t = time * S3L_FRACTIONS_PER_UNIT; for (S3L_Index i = 0; i < CAT1_VERTEX_COUNT * 3; i += 3) { S3L_Unit v0[3], v1[3]; v0[0] = cat1Vertices[i]; v0[1] = cat1Vertices[i + 1]; v0[2] = cat1Vertices[i + 2]; v1[0] = cat2Vertices[i]; v1[1] = cat2Vertices[i + 1]; v1[2] = cat2Vertices[i + 2]; catVertices[i] = S3L_interpolateByUnit(v0[0],v1[0],t); catVertices[i + 1] = S3L_interpolateByUnit(v0[1],v1[1],t); catVertices[i + 2] = S3L_interpolateByUnit(v0[2],v1[2],t); } } int16_t previousTriangle = -1; S3L_Unit uv0[2], uv1[2], uv2[2]; uint16_t l0, l1, l2; S3L_Vec4 toLight; int8_t light = 1; int8_t fog = 0; int8_t noise = 0; int8_t transparency = 0; int8_t mode = 0; S3L_Vec4 n0, n1, n2, nt; void drawPixel(S3L_PixelInfo *p) { if (p->triangleIndex != previousTriangle) { int16_t index; if (mode == 0) { index = p->triangleIndex * 3; int16_t i0 = uvIndices[index]; int16_t i1 = uvIndices[index + 1]; int16_t i2 = uvIndices[index + 2]; index = i0 * 2; uv0[0] = uvs[index]; uv0[1] = uvs[index + 1]; index = i1 * 2; uv1[0] = uvs[index]; uv1[1] = uvs[index + 1]; index = i2 * 2; uv2[0] = uvs[index]; uv2[1] = uvs[index + 1]; } else if (mode == 3) { index = p->triangleIndex * 3; S3L_Vec4 v0, v1, v2; S3L_Index v = model.triangles[index] * 3; v0.x = model.vertices[v]; v++; v0.y = model.vertices[v]; v++; v0.z = model.vertices[v]; v = model.triangles[index + 1] * 3; v1.x = model.vertices[v]; v++; v1.y = model.vertices[v]; v++; v1.z = model.vertices[v]; v = model.triangles[index + 2] * 3; v2.x = model.vertices[v]; v++; v2.y = model.vertices[v]; v++; v2.z = model.vertices[v]; S3L_triangleNormal(v0,v1,v2,&nt); nt.x = S3L_clamp(128 + nt.x / 4,0,255); nt.y = S3L_clamp(128 + nt.y / 4,0,255); nt.z = S3L_clamp(128 + nt.z / 4,0,255); } if (light || mode == 2) { index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3] * 3; n0.x = normals[index]; index++; n0.y = normals[index]; index++; n0.z = normals[index]; index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3 + 1] * 3; n1.x = normals[index]; index++; n1.y = normals[index]; index++; n1.z = normals[index]; index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3 + 2] * 3; n2.x = normals[index]; index++; n2.y = normals[index]; index++; n2.z = normals[index]; l0 = 256 + S3L_clamp(S3L_dotProductVec3(n0,toLight),-511,511) / 2; l1 = 256 + S3L_clamp(S3L_dotProductVec3(n1,toLight),-511,511) / 2; l2 = 256 + S3L_clamp(S3L_dotProductVec3(n2,toLight),-511,511) / 2; } previousTriangle = p->triangleIndex; } uint8_t r,g,b; int8_t transparent = 0; switch (mode) { case 0: // textured mode { S3L_Unit uv[2]; uv[0] = S3L_interpolateBarycentric(uv0[0],uv1[0],uv2[0], p->barycentric[0], p->barycentric[1], p->barycentric[2]); uv[1] = S3L_interpolateBarycentric(uv0[1],uv1[1],uv2[1], p->barycentric[0], p->barycentric[1], p->barycentric[2]); sampleTexture(uv[0] / 4,uv[1] / 4,&r,&g,&b); if (transparency && r == 255 && g == 0 && b == 0) transparent = 1; break; } case 1: // single color mode { r = 128; g = 128; b = 128; break; } case 2: // smooth normal mode { S3L_Vec4 n; n.x = S3L_interpolateBarycentric(n0.x,n1.x,n2.x, p->barycentric[0], p->barycentric[1], p->barycentric[2]); n.y = S3L_interpolateBarycentric(n0.y,n1.y,n2.y, p->barycentric[0], p->barycentric[1], p->barycentric[2]); n.z = S3L_interpolateBarycentric(n0.z,n1.z,n2.z, p->barycentric[0], p->barycentric[1], p->barycentric[2]); S3L_normalizeVec3(&n); r = S3L_clamp(128 + n.x / 4,0,255); g = S3L_clamp(128 + n.y / 4,0,255); b = S3L_clamp(128 + n.z / 4,0,255); break; } case 3: // non-smooth normal mode { r = nt.x; g = nt.y; b = nt.z; break; } case 4: // barycentric mode { r = p->barycentric[0] >> 1; g = p->barycentric[1] >> 1; b = p->barycentric[2] >> 1; break; } case 5: // triangle index mode { r = S3L_min(p->triangleIndex,255); g = r; b = r; } default: break; } if (light) { int16_t l = S3L_interpolateBarycentric(l0,l1,l2, p->barycentric[0], p->barycentric[1], p->barycentric[2]); r = S3L_clamp((((int16_t) r) * l) / S3L_FRACTIONS_PER_UNIT,0,255); g = S3L_clamp((((int16_t) g) * l) / S3L_FRACTIONS_PER_UNIT,0,255); b = S3L_clamp((((int16_t) b) * l) / S3L_FRACTIONS_PER_UNIT,0,255); } if (fog) { int16_t f = ((p->depth - S3L_NEAR) * 255) / (S3L_FRACTIONS_PER_UNIT * 64); f *= 2; r = S3L_clamp(((int16_t) r) + f,0,255); g = S3L_clamp(((int16_t) g) + f,0,255); b = S3L_clamp(((int16_t) b) + f,0,255); } if (transparency && transparent) { S3L_zBufferWrite(p->x,p->y,p->previousZ); return; } if (noise) setPixel(p->x + rand() % 8,p->y + rand() % 8,r,g,b); else setPixel(p->x,p->y,r,g,b); } void draw() { S3L_newFrame(); clearScreen(); S3L_drawScene(scene); } void setModel(uint8_t index) { printf("Setting model nmber %d.\n",index); #define modelCase(n,m)\ case n:\ {\ texture = m##Texture;\ uvs = m##UVs;\ uvIndices = m##UVIndices;\ normals = m##Normals;\ scene.models[0] = m##Model;\ S3L_computeModelNormals(scene.models[0],m##Normals,0);\ break;\ } switch (index) { modelCase(0,house) modelCase(1,chest) modelCase(2,cat) modelCase(3,plant) default: break; } #undef modelCase S3L_initTransoform3D(&(scene.models[0].transform)); S3L_initDrawConfig(&(scene.models[0].config)); if (index == 3) { scene.models[0].config.backfaceCulling = 0; transparency = 1; } else { scene.models[0].config.backfaceCulling = 2; transparency = 0; } printf("vertices: %d\n",scene.models[0].vertexCount); printf("triangles: %d\n",scene.models[0].triangleCount); } int16_t fps = 0; int main() { SDL_Window *window = SDL_CreateWindow("model viewer", SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED, S3L_RESOLUTION_X, S3L_RESOLUTION_Y, SDL_WINDOW_SHOWN); SDL_Renderer *renderer = SDL_CreateRenderer(window,-1,0); SDL_Texture *textureSDL = SDL_CreateTexture(renderer,SDL_PIXELFORMAT_RGBX8888, SDL_TEXTUREACCESS_STATIC, S3L_RESOLUTION_X, S3L_RESOLUTION_Y); SDL_Surface *screenSurface = SDL_GetWindowSurface(window); SDL_Event event; toLight.x = 10; toLight.y = 10; toLight.z = 10; S3L_normalizeVec3(&toLight); S3L_initScene(&model,1,&scene); scene.camera.transform.translation.z = -S3L_FRACTIONS_PER_UNIT * 8; catModel = cat1Model; catModel.vertices = catVertices; animate(0); int8_t modelIndex = 0; int8_t modelsTotal = 4; setModel(0); int running = 1; clock_t nextPrintT; nextPrintT = clock(); while (running) { clock_t frameStartT = clock(); draw(); fps++; SDL_UpdateTexture(textureSDL,NULL,pixels,S3L_RESOLUTION_X * sizeof(uint32_t)); clock_t nowT = clock(); double timeDiff = ((double) (nowT - nextPrintT)) / CLOCKS_PER_SEC; double frameDiff = ((double) (nowT - frameStartT)) / CLOCKS_PER_SEC; if (timeDiff >= 1.0) { nextPrintT = nowT; printf("FPS: %d\n",fps); fps = 0; } while (SDL_PollEvent(&event)) { if (event.type == SDL_QUIT) running = 0; else if (event.type == SDL_KEYDOWN) { if (event.key.keysym.scancode == SDL_SCANCODE_L) light = !light; else if (event.key.keysym.scancode == SDL_SCANCODE_F) fog = !fog; else if (event.key.keysym.scancode == SDL_SCANCODE_N) noise = !noise; else if (event.key.keysym.scancode == SDL_SCANCODE_SPACE) { modelIndex = (modelIndex + 1) % modelsTotal; setModel(modelIndex); } } } uint8_t *state = SDL_GetKeyboardState(NULL); int16_t rotationStep = S3L_max(1,300 * frameDiff); int16_t zoomStep = S3L_max(1,3000 * frameDiff); int16_t fovStep = S3L_max(1,1000 * frameDiff); if (!state[SDL_SCANCODE_LCTRL]) { if (state[SDL_SCANCODE_LEFT]) model.transform.rotation.y += rotationStep; else if (state[SDL_SCANCODE_RIGHT]) model.transform.rotation.y -= rotationStep; if (state[SDL_SCANCODE_DOWN]) model.transform.rotation.x += rotationStep; else if (state[SDL_SCANCODE_UP]) model.transform.rotation.x -= rotationStep; } else { if (state[SDL_SCANCODE_LEFT]) scene.camera.focalLength = S3L_min(S3L_FRACTIONS_PER_UNIT * 5,scene.camera.focalLength + fovStep); else if (state[SDL_SCANCODE_RIGHT]) scene.camera.focalLength = S3L_max(S3L_FRACTIONS_PER_UNIT / 2,scene.camera.focalLength - fovStep); if (state[SDL_SCANCODE_UP]) scene.camera.transform.translation.z = S3L_min(S3L_FRACTIONS_PER_UNIT, scene.camera.transform.translation.z + zoomStep); else if (state[SDL_SCANCODE_DOWN]) scene.camera.transform.translation.z = S3L_max(-S3L_FRACTIONS_PER_UNIT * 16, scene.camera.transform.translation.z - zoomStep); } if (state[SDL_SCANCODE_KP_0]) mode = 0; else if (state[SDL_SCANCODE_KP_1]) mode = 1; else if (state[SDL_SCANCODE_KP_2]) mode = 2; else if (state[SDL_SCANCODE_KP_3]) mode = 3; else if (state[SDL_SCANCODE_KP_4]) mode = 4; else if (state[SDL_SCANCODE_KP_5]) mode = 5; if (modelIndex == 2) animate(((double) clock()) / CLOCKS_PER_SEC); SDL_RenderClear(renderer); SDL_RenderCopy(renderer,textureSDL,NULL,NULL); SDL_RenderPresent(renderer); frame++; } return 0; }