/* Example program for small3dlib -- a GTA-like game demo. author: Miloslav Ciz license: CC0 1.0 */ #include #include #define S3L_FLAT 0 #define S3L_NEAR_CROSS_STRATEGY 3 #define S3L_PERSPECTIVE_CORRECTION 2 #define S3L_SORT 0 #define S3L_STENCIL_BUFFER 0 #define S3L_Z_BUFFER 2 #define S3L_PIXEL_FUNCTION drawPixel #define S3L_RESOLUTION_X 640 #define S3L_RESOLUTION_Y 480 #include "../small3dlib.h" #include "cityModel.h" #include "cityTexture.h" #include "carModel.h" #define TEXTURE_W 256 #define TEXTURE_H 256 #include "sdl_helper.h" #define MAX_VELOCITY 1000 #define ACCELERATION 700 #define TURN_SPEED 300 #define FRICTION 600 S3L_Model3D models[2]; const uint8_t collisionMap[8 * 10] = { 1,1,1,1,1,1,1,1, 1,1,1,1,0,0,0,1, 1,1,1,1,0,1,0,1, 2,2,1,0,0,0,0,3, 1,2,1,0,1,1,3,1, 2,0,0,0,1,1,3,3, 1,0,1,0,0,1,1,1, 1,0,0,0,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1 }; S3L_Scene scene; uint32_t frame = 0; void clearScreenBlue() { uint32_t index = 0; for (uint16_t y = 0; y < S3L_RESOLUTION_Y; ++y) { S3L_Unit t = S3L_min(S3L_FRACTIONS_PER_UNIT,((y * S3L_FRACTIONS_PER_UNIT) / S3L_RESOLUTION_Y) * 4); uint32_t r = S3L_interpolateByUnit(200,242,t); uint32_t g = S3L_interpolateByUnit(102,255,t); uint32_t b = S3L_interpolateByUnit(255,230,t); uint32_t color = (r << 24) | (g << 16 ) | (b << 8); for (uint16_t x = 0; x < S3L_RESOLUTION_X; ++x) { pixels[index] = color; index++; } } } uint32_t previousTriangle = -1; S3L_Vec4 uv0, uv1, uv2; void drawPixel(S3L_PixelInfo *p) { if (p->triangleID != previousTriangle) { const S3L_Index *uvIndices; const S3L_Unit *uvs; if (p->modelIndex == 0) { uvIndices = cityUVIndices; uvs = cityUVs; } else { uvIndices = carUVIndices; uvs = carUVs; } S3L_getIndexedTriangleValues(p->triangleIndex,uvIndices,uvs,2,&uv0,&uv1,&uv2); previousTriangle = p->triangleID; } uint8_t r, g, b; S3L_Unit uv[2]; uv[0] = S3L_interpolateBarycentric(uv0.x,uv1.x,uv2.x,p->barycentric); uv[1] = S3L_interpolateBarycentric(uv0.y,uv1.y,uv2.y,p->barycentric); sampleTexture(cityTexture,uv[0] >> 1,uv[1] >> 1,&r,&g,&b); setPixel(p->x,p->y,r,g,b); } void draw() { S3L_newFrame(); clearScreenBlue(); S3L_drawScene(scene); } static inline uint8_t collision(S3L_Vec4 worldPosition) { worldPosition.x /= S3L_FRACTIONS_PER_UNIT; worldPosition.z /= -S3L_FRACTIONS_PER_UNIT; uint16_t index = worldPosition.z * 8 + worldPosition.x; return collisionMap[index]; } static inline void handleCollision(S3L_Vec4 *pos, S3L_Vec4 previousPos) { S3L_Vec4 newPos = *pos; newPos.x = previousPos.x; if (collision(newPos)) { newPos = *pos; newPos.z = previousPos.z; if (collision(newPos)) newPos = previousPos; } *pos = newPos; } int16_t fps = 0; int main(void) { sdlInit(); cityModelInit(); carModelInit(); models[0] = cityModel; models[1] = carModel; S3L_sceneInit(models,2,&scene); S3L_transform3DSet(1909,16,-3317,0,-510,0,512,512,512,&(models[1].transform)); int running = 1; clock_t nextPrintT; nextPrintT = clock(); S3L_Vec4 carDirection; S3L_vec4Init(&carDirection); scene.camera.transform.translation.y = S3L_FRACTIONS_PER_UNIT / 2; scene.camera.transform.rotation.x = -S3L_FRACTIONS_PER_UNIT / 16; int16_t velocity = 0; while (running) // main loop { clock_t frameStartT = clock(); models[1].transform.rotation.y += models[1].transform.rotation.z; // overturn the car for the rendering draw(); models[1].transform.rotation.y -= models[1].transform.rotation.z; // turn the car back for the physics fps++; clock_t nowT = clock(); double timeDiff = ((double) (nowT - nextPrintT)) / CLOCKS_PER_SEC; double frameDiff = ((double) (nowT - frameStartT)) / CLOCKS_PER_SEC; int16_t frameDiffMs = frameDiff * 1000; if (timeDiff >= 1.0) { nextPrintT = nowT; printf("FPS: %d\n",fps); fps = 0; } while (SDL_PollEvent(&event)) if (event.type == SDL_QUIT) running = 0; const uint8_t *state = SDL_GetKeyboardState(NULL); int16_t step = (velocity * frameDiffMs) / 1000; int16_t stepFriction = (FRICTION * frameDiffMs) / 1000; int16_t stepRotation = TURN_SPEED * frameDiffMs * S3L_max(0,velocity - 200) / (MAX_VELOCITY * 1000); int16_t stepVelocity = S3L_nonZero((ACCELERATION * frameDiffMs) / 1000); if (stepRotation == 0 && S3L_abs(velocity) >= 200) stepRotation = 1; if (velocity < 0) stepRotation *= -1; if (state[SDL_SCANCODE_ESCAPE]) running = 0; else if (state[SDL_SCANCODE_LEFT]) { models[1].transform.rotation.y += stepRotation; models[1].transform.rotation.z = S3L_min(S3L_abs(velocity) / 64, models[1].transform.rotation.z + 1); } else if (state[SDL_SCANCODE_RIGHT]) { models[1].transform.rotation.y -= stepRotation; models[1].transform.rotation.z = S3L_max(-S3L_abs(velocity) / 64, models[1].transform.rotation.z - 1); } else models[1].transform.rotation.z = (models[1].transform.rotation.z * 3) / 4; S3L_rotationToDirections(models[1].transform.rotation,S3L_FRACTIONS_PER_UNIT,&carDirection,0,0); S3L_Vec4 previousCarPos = models[1].transform.translation; int16_t friction = 0; if (state[SDL_SCANCODE_UP]) velocity = S3L_min(MAX_VELOCITY,velocity + (velocity < 0 ? (2 * stepVelocity) : stepVelocity)); else if (state[SDL_SCANCODE_DOWN]) velocity = S3L_max(-MAX_VELOCITY,velocity - (velocity > 0 ? (2 * stepVelocity) : stepVelocity)); else friction = 1; models[1].transform.translation.x += (carDirection.x * step) / S3L_FRACTIONS_PER_UNIT; models[1].transform.translation.z += (carDirection.z * step) / S3L_FRACTIONS_PER_UNIT; uint8_t coll = collision(models[1].transform.translation); if (coll != 0) { if (coll == 1) { handleCollision(&(models[1].transform.translation),previousCarPos); friction = 2; } else if (coll == 2) { // teleport the car models[1].transform.translation.x += 5 * S3L_FRACTIONS_PER_UNIT; models[1].transform.translation.z += 2 * S3L_FRACTIONS_PER_UNIT; } else { // teleport the car models[1].transform.translation.x -= 5 * S3L_FRACTIONS_PER_UNIT; models[1].transform.translation.z -= 2 * S3L_FRACTIONS_PER_UNIT; } } if (velocity > 0) velocity = S3L_max(0,velocity - stepFriction * friction); else velocity = S3L_min(0,velocity + stepFriction * friction); S3L_Unit cameraDistance = S3L_interpolate(S3L_FRACTIONS_PER_UNIT / 2,(3 * S3L_FRACTIONS_PER_UNIT) / 4,S3L_abs(velocity),MAX_VELOCITY); scene.camera.transform.translation.x = scene.models[1].transform.translation.x - (carDirection.x * cameraDistance) / S3L_FRACTIONS_PER_UNIT; scene.camera.transform.translation.z = scene.models[1].transform.translation.z - (carDirection.z * cameraDistance) / S3L_FRACTIONS_PER_UNIT; scene.camera.transform.rotation.y = models[1].transform.rotation.y; sdlUpdate(); frame++; } return 0; }