/* WIP Simple realtime 3D software rasterization library. It is fast, focused on resource-limited computers, located in a single C header file, with no dependencies, using only integer arithmetic. author: Miloslav Ciz license: CC0 1.0 -------------------- CONVENTIONS: Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs. We use row vectors. COORDINATE SYSTEMS: In 3D space, a left-handed coord. system is used. One spatial unit is split into S3L_FRACTIONS_PER_UNIT fractions (fixed point arithmetic). y ^ | _ | /| z | / | / [0,0,0]-------> x Untransformed camera is placed at [0,0,0], looking forward along +z axis. The projection plane is centered at [0,0,0], stretrinch from -S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x), vertical size (y) depends on the camera aspect ratio. Camera FOV is defined by focal length. y ^ | _ | /| z ____|_/__ | |/ | -----[0,0,0]-|-----> x |____|____| | | Coordinates of pixels on screen start typically at the top left, from [0,0]. */ #ifndef S3L_H #define S3L_H #include typedef int32_t S3L_Unit; /**< Units of measurement in 3D space. There is S3L_FRACTIONS_PER_UNIT in one spatial unit. By dividing the unit into fractions we effectively achieve fixed point arithmetic. The number of fractions is a constant that serves as 1.0 in floating point arithmetic (normalization etc.). */ #define S3L_FRACTIONS_PER_UNIT 512 /**< How many fractions a spatial unit is split into. WARNING: if setting higher than 1024, you'll probably have to modify a sin table otherwise it will overflow. Also other things may overflow, so rather don't do it. */ #define S3L_SIN_TABLE_LENGTH 128 static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] = { /* 511 was chosen here as a highest number that doesn't overflow during compilation for S3L_FRACTIONS_PER_UNIT == 1024 */ (0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511, (12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511, (25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511, (37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511, (50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511, (62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511, (74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511, (87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511, (99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511, (111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511, (124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511, (136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511, (148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511, (160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511, (172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511, (183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511, (195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511, (207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511, (218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511, (229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511, (240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511, (251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511, (262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511, (273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511, (283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511, (294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511, (304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511, (314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511, (324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511, (333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511, (343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511, (352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511, (361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511, (370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511, (378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511, (386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511, (395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511, (402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511, (410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511, (417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511, (424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511, (431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511, (438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511, (444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511, (450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511, (456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511, (461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511, (467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511, (472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511, (476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511, (481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511, (485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511, (488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511, (492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511, (495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511, (498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511, (501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511, (503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511, (505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511, (508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511 }; #define S3L_SIN_TABLE_UNIT_STEP\ (S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4)) typedef int16_t S3L_ScreenCoord; typedef uint16_t S3L_Index; /** Vector that consists of four scalars and can represent homogenous coordinates, but is generally also used as Vec3 and Vec2. */ typedef struct { S3L_Unit x; S3L_Unit y; S3L_Unit z; S3L_Unit w; } S3L_Vec4; #define S3L_writeVec4(v)\ printf("Vec4: %d %d %d %d\n",(v.x),(v.y),(v.z),(v.w)) static inline void S3L_initVec4(S3L_Vec4 *v) { v->x = 0; v->y = 0; v->z = 0; v->w = S3L_FRACTIONS_PER_UNIT; } typedef S3L_Unit S3L_Mat4[4][4]; /**< 4x4 matrix, used mostly for 3D transforms. The indexing is this: matrix[column][row]. */ #define S3L_writeMat4(m)\ printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\ ,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\ (m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\ (m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\ (m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3]) /** Initializes a 4x4 matrix to identity. */ static inline void S3L_initMat4(S3L_Mat4 *m) { #define M(x,y) (*m)[x][y] #define S S3L_FRACTIONS_PER_UNIT M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0; M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0; M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0; M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S; #undef M #undef S } /** Multiplies a vector by a matrix with normalization by S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */ void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m) { S3L_Vec4 vBackup; vBackup.x = v->x; vBackup.y = v->y; vBackup.z = v->z; vBackup.w = v->w; // TODO: try alternative operation orders to optimize #define dot(col)\ (vBackup.x * (*m)[col][0]) / S3L_FRACTIONS_PER_UNIT +\ (vBackup.y * (*m)[col][1]) / S3L_FRACTIONS_PER_UNIT +\ (vBackup.z * (*m)[col][2]) / S3L_FRACTIONS_PER_UNIT +\ (vBackup.w * (*m)[col][3]) / S3L_FRACTIONS_PER_UNIT v->x = dot(0); v->y = dot(1); v->z = dot(2); v->w = dot(3); #undef dot } // general helper functions static inline int16_t S3L_abs(int16_t value) { return value >= 0 ? value : -1 * value; } static inline int16_t S3L_min(int16_t v1, int16_t v2) { return v1 >= v2 ? v2 : v1; } static inline int16_t S3L_max(int16_t v1, int16_t v2) { return v1 >= v2 ? v1 : v2; } static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod) { return value >= 0 ? (value % mod) : (mod + (value % mod) - 1); } static inline S3L_Unit S3L_nonZero(S3L_Unit value) { return value != 0 ? value : 1; } /** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT. Result is stored in the first matrix. */ void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2) { S3L_Mat4 mat1; for (uint16_t row = 0; row < 4; ++row) for (uint16_t col = 0; col < 4; ++col) mat1[col][row] = (*m1)[col][row]; for (uint16_t row = 0; row < 4; ++row) for (uint16_t col = 0; col < 4; ++col) { (*m1)[col][row] = 0; for (uint16_t i = 0; i < 4; ++i) (*m1)[col][row] += (mat1[i][row] * (*m2)[col][i]) / S3L_FRACTIONS_PER_UNIT; } } S3L_Unit S3L_sin(S3L_Unit x) { x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4); int8_t positive = 1; if (x < S3L_SIN_TABLE_LENGTH) x = x; else if (x < S3L_SIN_TABLE_LENGTH * 2) x = S3L_SIN_TABLE_LENGTH * 2 - x - 1; else if (x < S3L_SIN_TABLE_LENGTH * 3) { x = x - S3L_SIN_TABLE_LENGTH * 2; positive = 0; } else { x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1; positive = 0; } return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x]; } static inline S3L_Unit S3L_cos(S3L_Unit x) { return S3L_sin(x - S3L_FRACTIONS_PER_UNIT / 4); } void S3L_makeTranslationMat( S3L_Unit offsetX, S3L_Unit offsetY, S3L_Unit offsetZ, S3L_Mat4 *m) { #define M(x,y) (*m)[x][y] #define S S3L_FRACTIONS_PER_UNIT M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0; M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0; M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0; M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S; #undef M #undef S } /** Makes a rotation matrix. For the rotation conventions (meaning, order, units) see the appropriate structure comments. */ void S3L_makeRotationMatrix( S3L_Unit aroundX, S3L_Unit aroundY, S3L_Unit aroundZ, S3L_Mat4 *m) { S3L_Unit sx = S3L_sin(aroundX); S3L_Unit sy = S3L_sin(aroundY); S3L_Unit sz = S3L_sin(aroundZ); S3L_Unit cx = S3L_cos(aroundX); S3L_Unit cy = S3L_cos(aroundY); S3L_Unit cz = S3L_cos(aroundZ); #define M(x,y) (*m)[x][y] #define S S3L_FRACTIONS_PER_UNIT M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S); M(1,0) = (cx * sz) / S; M(2,0) = (cy * sx * sz) / (S * S) - (cz * sy) / S; M(3,0) = 0; M(0,1) = (cz * sy * sx) / (S * S) - (cy * sz) / S; M(1,1) = (cx * cz) / S; M(2,1) = (cy * cz * sx) / (S * S) + (sy * sz) / S; M(3,1) = 0; M(0,2) = (cx * sy) / S; M(1,2) = -1 * sx; M(2,2) = (cy * cx) / S; M(3,2) = 0; M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_FRACTIONS_PER_UNIT; #undef M #undef S } typedef struct { S3L_Vec4 translation; S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order: 1. z = around z (roll) CW looking along z+ 2. x = around x (pitch) CW looking along x+ 3. y = around y (yaw) CW looking along y+ */ S3L_Vec4 scale; } S3L_Transform3D; static inline void S3L_initTransoform3D(S3L_Transform3D *t) { S3L_initVec4(&(t->translation)); S3L_initVec4(&(t->rotation)); t->scale.x = S3L_FRACTIONS_PER_UNIT; t->scale.y = S3L_FRACTIONS_PER_UNIT; t->scale.z = S3L_FRACTIONS_PER_UNIT; } typedef struct { uint16_t resolutionX; uint16_t resolutionY; S3L_Unit focalLength; ///< Defines the field of view (FOV). S3L_Transform3D transform; } S3L_Camera; static inline void S3L_initCamera(S3L_Camera *c) { c->resolutionX = 128; c->resolutionY = 64; c->focalLength = S3L_FRACTIONS_PER_UNIT; S3L_initTransoform3D(&(c->transform)); } typedef struct { S3L_ScreenCoord x; ///< Screen X coordinate. S3L_ScreenCoord y; ///< Screen Y coordinate. S3L_Unit barycentric0; /**< Barycentric coord 0 (corresponds to 1st vertex). Together with 1 and 2 coords these serve to locate the pixel on a triangle and interpolate values between it's three points. The sum of the three coordinates will always be exactly S3L_FRACTIONS_PER_UNIT. */ S3L_Unit barycentric1; ///< Baryc. coord 1 (corresponds to 2nd vertex). S3L_Unit barycentric2; ///< Baryc. coord 2 (corresponds to 3rd vertex). S3L_Index triangleID; } S3L_PixelInfo; static inline void S3L_initPixelInfo(S3L_PixelInfo *p) { p->x = 0; p->y = 0; p->barycentric0 = S3L_FRACTIONS_PER_UNIT; p->barycentric1 = 0; p->barycentric2 = 0; p->triangleID = 0; } #define S3L_BACKFACE_CULLING_NONE 0 #define S3L_BACKFACE_CULLING_CW 1 #define S3L_BACKFACE_CULLING_CCW 2 #define S3L_MODE_TRIANGLES 0 #define S3L_MODE_LINES 1 #define S3L_MODE_POINTS 2 typedef struct { int backfaceCulling; int mode; } S3L_DrawConfig; void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl typedef struct { int16_t steps; int16_t err; S3L_ScreenCoord x; S3L_ScreenCoord y; int16_t *majorCoord; int16_t *minorCoord; int16_t majorIncrement; int16_t minorIncrement; int16_t majorDiff; int16_t minorDiff; } S3L_BresenhamState; ///< State of drawing a line with Bresenham algorithm. /** Returns a value interpolated between the three triangle vertices based on barycentric coordinates. */ static inline S3L_Unit S3L_interpolateBarycentric( S3L_Unit value0, S3L_Unit value1, S3L_Unit value2, S3L_Unit barycentric0, S3L_Unit barycentric1, S3L_Unit barycentric2) { return ( (value0 * barycentric0) + (value1 * barycentric1) + (value2 * barycentric2) ) / S3L_FRACTIONS_PER_UNIT; } /** Interpolated between two values, v1 and v2, in the same ratio as t is to tMax. Does NOT prevent zero division. */ static inline int16_t S3L_interpolate(int16_t v1, int16_t v2, int16_t t, int16_t tMax) { return v1 + ((v2 - v1) * t) / tMax; } /** Same as S3L_interpolate but with v1 = 0. Should be faster. */ static inline int16_t S3L_interpolateFrom0(int16_t v2, int16_t t, int16_t tMax) { return (v2 * t) / tMax; } void S3L_bresenhamInit(S3L_BresenhamState *state, int16_t x0, int16_t y0, int16_t x1, int16_t y1) { int16_t dx = x1 - x0; int16_t dy = y1 - y0; int16_t absDx = S3L_abs(dx); int16_t absDy = S3L_abs(dy); if (absDx >= absDy) { state->majorCoord = &(state->x); state->minorCoord = &(state->y); state->minorDiff = 2 * absDy; state->majorDiff = 2 * absDx; state->err = 2 * dy - dx; state->majorIncrement = dx >= 0 ? 1 : -1; state->minorIncrement = dy >= 0 ? 1 : -1; state->steps = absDx; } else { state->majorCoord = &(state->y); state->minorCoord = &(state->x); state->minorDiff = 2 * absDx; state->majorDiff = 2 * absDy; state->err = 2 * dx - dy; state->majorIncrement = dy >= 0 ? 1 : -1; state->minorIncrement = dx >= 0 ? 1 : -1; state->steps = absDy; } state->x = x0; state->y = y0; } int S3L_bresenhamStep(S3L_BresenhamState *state) { state->steps--; (*state->majorCoord) += state->majorIncrement; if (state->err > 0) { (*state->minorCoord) += state->minorIncrement; state->err -= state->majorDiff; } state->err += state->minorDiff; return state->steps >= 0; } void S3L_drawTriangle( S3L_ScreenCoord x0, S3L_ScreenCoord y0, S3L_ScreenCoord x1, S3L_ScreenCoord y1, S3L_ScreenCoord x2, S3L_ScreenCoord y2, S3L_DrawConfig config, S3L_Index triangleID) { if (config.backfaceCulling != S3L_BACKFACE_CULLING_NONE) { int cw = // matrix determinant x0 * y1 + y0 * x2 + x1 * y2 - y1 * x2 - y0 * x1 - x0 * y2 > 0; if ((config.backfaceCulling == S3L_BACKFACE_CULLING_CW && !cw) || (config.backfaceCulling == S3L_BACKFACE_CULLING_CCW && cw)) return; } S3L_PixelInfo p; S3L_initPixelInfo(&p); p.triangleID = triangleID; // point mode if (config.mode == S3L_MODE_POINTS) { p.x = x0; p.y = y0; p.barycentric0 = S3L_FRACTIONS_PER_UNIT; p.barycentric1 = 0; p.barycentric2 = 0; S3L_PIXEL_FUNCTION(&p); p.x = x1; p.y = y1; p.barycentric0 = 0; p.barycentric1 = S3L_FRACTIONS_PER_UNIT; p.barycentric2 = 0; S3L_PIXEL_FUNCTION(&p); p.x = x2; p.y = y2; p.barycentric0 = 0; p.barycentric1 = 0; p.barycentric2 = S3L_FRACTIONS_PER_UNIT; S3L_PIXEL_FUNCTION(&p); return; } // line mode if (config.mode == S3L_MODE_LINES) { S3L_BresenhamState line; S3L_Unit lineLen; #define drawLine(p1,p2)\ S3L_bresenhamInit(&line,x##p1,y##p1,x##p2,y##p2);\ p.barycentric0 = 0;\ p.barycentric1 = 0;\ p.barycentric2 = 0;\ lineLen = S3L_nonZero(line.steps);\ do\ {\ p.x = line.x; p.y = line.y;\ p.barycentric##p1 = S3L_interpolateFrom0(\ S3L_FRACTIONS_PER_UNIT,line.steps,lineLen); \ p.barycentric##p2 = S3L_FRACTIONS_PER_UNIT - p.barycentric##p1;\ S3L_PIXEL_FUNCTION(&p);\ } while (S3L_bresenhamStep(&line)); drawLine(0,1) drawLine(2,0) drawLine(1,2) #undef drawLine return; } // triangle mode S3L_ScreenCoord tPointX, tPointY, // top triangle point coords lPointX, lPointY, // left triangle point coords rPointX, rPointY; // right triangle point coords S3L_Unit *barycentric0; // bar. coord that gets higher from L to R S3L_Unit *barycentric1; // bar. coord that gets higher from R to L S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up // Sort the points. #define handleLR(t,a,b)\ int16_t aDx = x##a - x##t;\ int16_t bDx = x##b - x##t;\ int16_t aDy = S3L_nonZero(y##a - y##t);\ int16_t bDy = S3L_nonZero(y##b - y##t);\ if ((aDx << 4) / aDy < (bDx << 4) / bDy)\ /*if (x##a <= x##b)*/\ {\ lPointX = x##a; lPointY = y##a;\ rPointX = x##b; rPointY = y##b;\ barycentric0 = &p.barycentric##b;\ barycentric1 = &p.barycentric##a;\ }\ else\ {\ lPointX = x##b; lPointY = y##b;\ rPointX = x##a; rPointY = y##a;\ barycentric0 = &p.barycentric##a;\ barycentric1 = &p.barycentric##b;\ } if (y0 <= y1) { if (y0 <= y2) { tPointX = x0; tPointY = y0; barycentric2 = &p.barycentric0; handleLR(0,1,2) } else { tPointX = x2; tPointY = y2; barycentric2 = &p.barycentric2; handleLR(2,0,1) } } else { if (y1 <= y2) { tPointX = x1; tPointY = y1; barycentric2 = &p.barycentric1; handleLR(1,0,2) } else { tPointX = x2; tPointY = y2; barycentric2 = &p.barycentric2; handleLR(2,0,1) } } // Now draw the triangle line by line. #undef handleLR S3L_ScreenCoord splitY; // Y at which one side (L or R) changes S3L_ScreenCoord endY; // bottom Y of the whole triangle int splitOnLeft; // whether split happens on L or R if (rPointY <= lPointY) { splitY = rPointY; splitOnLeft = 0; endY = lPointY; } else { splitY = lPointY; splitOnLeft = 1; endY = rPointY; } S3L_ScreenCoord currentY = tPointY; /* We'll be using a slight modification of Bresenham line algorithm (a one that draws a _non-continous_ line). */ int16_t /* triangle side: left right */ lX, rX, // current x position lDx, rDx, // dx (end point - start point) lDy, rDy, // dy (end point - start point) lInc, rInc, // direction in which to increment (1 or -1) lErr, rErr, // current error (Bresenham) lErrAdd, rErrAdd, // error value to add in each Bresenham cycle lErrSub, rErrSub; // error value to substract when moving in x direction S3L_Unit lSideUnitStep, rSideUnitStep, lSideUnitPos, rSideUnitPos; int16_t helperDxAbs; #define initSide(v,p1,p2, down)\ v##X = p1##PointX;\ v##Dx = p2##PointX - p1##PointX;\ v##Dy = p2##PointY - p1##PointY;\ v##SideUnitStep = S3L_FRACTIONS_PER_UNIT / (v##Dy != 0 ? v##Dy : 1);\ v##SideUnitPos = 0;\ if (!down)\ {\ v##SideUnitPos = S3L_FRACTIONS_PER_UNIT;\ v##SideUnitStep *= -1;\ }\ helperDxAbs = S3L_abs(v##Dx);\ v##Inc = v##Dx >= 0 ? 1 : -1;\ v##Err = 2 * helperDxAbs - v##Dy;\ v##ErrAdd = 2 * helperDxAbs;\ v##ErrSub = 2 * v##Dy;\ v##ErrSub = v##ErrSub != 0 ? v##ErrSub : 1; /* don't allow 0, could lead to an infinite substracting loop */ #define stepSide(s)\ while (s##Err > 0)\ {\ s##X += s##Inc;\ s##Err -= s##ErrSub;\ }\ s##Err += s##ErrAdd; initSide(r,t,r,1) initSide(l,t,l,1) while (currentY <= endY) { if (currentY == splitY) { if (splitOnLeft) { initSide(l,l,r,0); S3L_Unit *tmp = barycentric0; barycentric0 = barycentric2; barycentric2 = tmp; rSideUnitPos = S3L_FRACTIONS_PER_UNIT - rSideUnitPos; rSideUnitStep *= -1; } else { initSide(r,r,l,0); S3L_Unit *tmp = barycentric1; barycentric1 = barycentric2; barycentric2 = tmp; lSideUnitPos = S3L_FRACTIONS_PER_UNIT - lSideUnitPos; lSideUnitStep *= -1; } } p.y = currentY; // draw the line S3L_Unit tMax = rX - lX; tMax = tMax != 0 ? tMax : 1; // prevent division by zero S3L_Unit t1 = 0; S3L_Unit t2 = tMax; for (S3L_ScreenCoord x = lX; x <= rX; ++x) { *barycentric0 = S3L_interpolateFrom0(rSideUnitPos,t1,tMax); *barycentric1 = S3L_interpolateFrom0(lSideUnitPos,t2,tMax); *barycentric2 = S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1; p.x = x; S3L_PIXEL_FUNCTION(&p); ++t1; --t2; } stepSide(r) stepSide(l) lSideUnitPos += lSideUnitStep; rSideUnitPos += rSideUnitStep; ++currentY; } #undef initSide #undef stepSide } static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle) { if (angle < S3L_SIN_TABLE_UNIT_STEP) return; // no visible rotation S3L_Unit angleSin = S3L_sin(angle); S3L_Unit angleCos = S3L_cos(angle); S3L_Unit xBackup = *x; *x = (angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT - (angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT; *y = (angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT + (angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT; } void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m) { S3L_makeRotationMatrix( worldTransform.rotation.x, worldTransform.rotation.y, worldTransform.rotation.z, m); S3L_Mat4 t; S3L_makeTranslationMat( worldTransform.translation.x, worldTransform.translation.y, worldTransform.translation.z, &t); S3L_mat4Xmat4(m,&t); } void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m) { S3L_makeTranslationMat( -1 * cameraTransform.translation.x, -1 * cameraTransform.translation.y, -1 * cameraTransform.translation.z, m); } static inline void S3L_mapCameraToScreen(S3L_Vec4 point, S3L_Camera *camera, S3L_ScreenCoord *screenX, S3L_ScreenCoord *screenY) { uint16_t halfW = camera->resolutionX >> 1; // TODO: precompute earlier? uint16_t halfH = camera->resolutionY >> 1; *screenX = halfW + (point.x * halfW) / point.z; *screenY = halfH - (point.y * halfW) / point.z; // ^ S3L_FRACTIONS_PER_UNIT cancel out } void S3L_drawModel( const S3L_Unit coords[], const S3L_Index triangleVertexIndices[], uint16_t triangleCount, S3L_Transform3D modelTransform, S3L_Camera camera, S3L_DrawConfig config) { S3L_Index triangleIndex = 0; S3L_Index coordIndex = 0; S3L_ScreenCoord sX0, sY0, sX1, sY1, sX2, sY2; S3L_Vec4 pointModel; S3L_Unit indexIndex; pointModel.w = S3L_FRACTIONS_PER_UNIT; // has to be "1.0" for translation S3L_Mat4 mat1, mat2; S3L_makeWorldMatrix(modelTransform,&mat1); S3L_makeCameraMatrix(camera.transform,&mat2); S3L_mat4Xmat4(&mat1,&mat2); while (triangleIndex < triangleCount) { #define mapCoords(n)\ indexIndex = triangleVertexIndices[coordIndex] * 3;\ pointModel.x = coords[indexIndex];\ ++indexIndex; /* TODO: put into square brackets? */\ pointModel.y = coords[indexIndex];\ ++indexIndex;\ pointModel.z = coords[indexIndex];\ ++coordIndex;\ S3L_vec4Xmat4(&pointModel,&mat1);\ S3L_mapCameraToScreen(pointModel,&camera,&sX##n,&sY##n); mapCoords(0) mapCoords(1) mapCoords(2) S3L_drawTriangle(sX0,sY0,sX1,sY1,sX2,sY2,config,triangleIndex); ++triangleIndex; } } #endif