mirror of
https://git.coom.tech/drummyfish/small3dlib.git
synced 2024-11-21 20:39:57 +01:00
1321 lines
40 KiB
C
1321 lines
40 KiB
C
/*
|
|
WIP
|
|
|
|
Simple realtime 3D software rasterization renderer. It is fast, focused on
|
|
resource-limited computers, located in a single C header file, with no
|
|
dependencies, using only integer arithmetics.
|
|
|
|
author: Miloslav Ciz
|
|
license: CC0 1.0 + additional waiver of all IP
|
|
|
|
--------------------
|
|
|
|
This work's goal is to never be encumbered by any exclusive intellectual
|
|
property rights. The work is therefore provided under CC0 1.0 + additional
|
|
WAIVER OF ALL INTELLECTUAL PROPERTY RIGHTS that waives the rest of
|
|
intellectual property rights not already waived by CC0 1.0. The WAIVER OF ALL
|
|
INTELLECTUAL PROPERTY RGHTS is as follows:
|
|
|
|
Each contributor to this work agrees that they waive any exclusive rights,
|
|
including but not limited to copyright, patents, trademark, trade dress,
|
|
industrial design, plant varieties and trade secrets, to any and all ideas,
|
|
concepts, processes, discoveries, improvements and inventions conceived,
|
|
discovered, made, designed, researched or developed by the contributor either
|
|
solely or jointly with others, which relate to this work or result from this
|
|
work. Should any waiver of such right be judged legally invalid or
|
|
ineffective under applicable law, the contributor hereby grants to each
|
|
affected person a royalty-free, non transferable, non sublicensable, non
|
|
exclusive, irrevocable and unconditional license to this right.
|
|
|
|
--------------------
|
|
|
|
CONVENTIONS:
|
|
|
|
Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs.
|
|
|
|
We use row vectors.
|
|
|
|
COORDINATE SYSTEMS:
|
|
|
|
In 3D space, a left-handed coord. system is used. One spatial unit is split
|
|
into S3L_FRACTIONS_PER_UNIT fractions (fixed point arithmetic).
|
|
|
|
y ^
|
|
| _
|
|
| /| z
|
|
| /
|
|
| /
|
|
[0,0,0]-------> x
|
|
|
|
Untransformed camera is placed at [0,0,0], looking forward along +z axis. The
|
|
projection plane is centered at [0,0,0], stretrinch from
|
|
-S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x),
|
|
vertical size (y) depends on the camera aspect ratio. Camera FOV is defined
|
|
by focal length.
|
|
|
|
y ^
|
|
| _
|
|
| /| z
|
|
____|_/__
|
|
| |/ |
|
|
-----[0,0,0]-|-----> x
|
|
|____|____|
|
|
|
|
|
|
|
|
|
|
Coordinates of pixels on screen start typically at the top left, from [0,0].
|
|
|
|
Triangle rasterization rules are these (mostly same as OpenGL, D3D etc.):
|
|
|
|
- Let's define:
|
|
- left side:
|
|
- not exactly horizontal, and on the left side of triangle
|
|
- exactly horizontal and above the topmost
|
|
(in other words: its normal points at least a little to the left or
|
|
completely up)
|
|
- right side: not left side
|
|
- Pixel centers are at integer coordinates and triangle for drawing are
|
|
specified with integer coordinates of pixel centers.
|
|
- A pixel is rasterized:
|
|
- if its center is inside the triangle OR
|
|
- if its center is exactly on the triangle side which is left and at the
|
|
same time is not on the side that's right (case of a triangle that's on
|
|
a single line) OR
|
|
- if its center is exactly on the triangle corner of sides neither of which
|
|
is right.
|
|
|
|
These rules imply among others:
|
|
|
|
- Adjacent triangles don't have any overlapping pixels, nor gaps between.
|
|
- Triangles of points that lie on a single line are NOT rasterized.
|
|
- A single "long" triangle CAN be rasterized as non-continuous.
|
|
- Transforming (e.g. mirroring, rotating by 90 degrees etc.) a result of
|
|
rasterizing triangle A is NOT generally equal to applying the same
|
|
transformation to triangle A first and then rasterizing it. Even the number
|
|
of rasterized pixels is usually different.
|
|
- If specifying a triangle with integer coordinates, then:
|
|
- The bottom-most corner (or side) of a triangle is never rasterized
|
|
(because it is connected to a right side).
|
|
- The top-most corner can only be rasterized on completely horizontal side
|
|
(otherwise it is connected to a right side).
|
|
- Vertically middle corner is rasterized if and only if it is on the left
|
|
of the triangle and at the same time is also not the bottom-most corner.
|
|
*/
|
|
|
|
#ifndef S3L_H
|
|
#define S3L_H
|
|
|
|
#include <stdint.h>
|
|
|
|
#ifndef S3L_RESOLUTION_X
|
|
#define S3L_RESOLUTION_X 640 //< Redefine to your screen x resolution.
|
|
#endif
|
|
|
|
#ifndef S3L_RESOLUTION_Y
|
|
#define S3L_RESOLUTION_Y 480 //< Redefine to your screen y resolution.
|
|
#endif
|
|
|
|
#ifndef S3L_PERSPECTIVE_CORRECTION
|
|
#define S3L_PERSPECTIVE_CORRECTION 1
|
|
#endif
|
|
|
|
#define S3L_HALF_RESOLUTION_X (S3L_RESOLUTION_X >> 1)
|
|
#define S3L_HALF_RESOLUTION_Y (S3L_RESOLUTION_Y >> 1)
|
|
|
|
typedef int32_t S3L_Unit; /**< Units of measurement in 3D space. There is
|
|
S3L_FRACTIONS_PER_UNIT in one spatial unit.
|
|
By dividing the unit into fractions we
|
|
effectively achieve fixed point arithmetic.
|
|
The number of fractions is a constant that
|
|
serves as 1.0 in floating point arithmetic
|
|
(normalization etc.). */
|
|
#define S3L_FRACTIONS_PER_UNIT 512 /**< How many fractions a spatial unit is
|
|
split into. WARNING: if setting
|
|
higher than 1024, you'll probably
|
|
have to modify a sin table otherwise
|
|
it will overflow. Also other things
|
|
may overflow, so rather don't do it. */
|
|
|
|
#ifndef S3L_LERP_QUALITY
|
|
#define S3L_LERP_QUALITY 8 /**< Quality (scaling) of SOME linear
|
|
interpolations. 0 will most likely be faster,
|
|
but artifacts can occur for bigger tris,
|
|
while higher values can fix this -- in theory
|
|
all higher values will have the same speed
|
|
(it is a shift value), but it mustn't be too
|
|
high to prevent overflow. */
|
|
#endif
|
|
|
|
/** Predefined vertices of a cube to simply insert in an array. These come with
|
|
S3L_CUBE_TRIANGLES and S3L_CUBE_TEXCOORDS. */
|
|
#define S3L_CUBE_VERTICES\
|
|
/* 0 front, bottom, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 1 front, bottom, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 2 front, top, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 3 front, top, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 4 back, bottom, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 5 back, bottom, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 6 back, top, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 7 back, top, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2
|
|
|
|
/** Predefined triangle indices of a cube, to be used with S3L_CUBE_VERTICES
|
|
and S3L_CUBE_TEXCOORDS. */
|
|
#define S3L_CUBE_TRIANGLES\
|
|
0, 3, 2, /* front */\
|
|
0, 1, 3,\
|
|
4, 0, 2, /* right */\
|
|
4, 2, 6,\
|
|
5, 4, 6, /* back */\
|
|
6, 7, 5,\
|
|
7, 3, 1, /* left */\
|
|
7, 1, 5,\
|
|
3, 6, 2, /* top */\
|
|
3, 7, 6,\
|
|
4, 1, 0, /* bottom */\
|
|
4, 5, 1
|
|
|
|
/** Predefined texture coordinates of a cube, corresponding to triangles (NOT
|
|
vertices), to be used with S3L_CUBE_VERTICES and S3L_CUBE_TRIANGLES. */
|
|
#define S3L_CUBE_TEXCOORDS\
|
|
1,1, 0,0, 1,0,\
|
|
1,1, 0,1, 0,0,\
|
|
1,0, 1,1, 0,1,\
|
|
1,0, 0,1, 0,0,\
|
|
0,0, 1,0, 1,1,\
|
|
1,1, 0,1, 0,0,\
|
|
0,1, 0,0, 1,0,\
|
|
0,1, 1,0, 1,1,\
|
|
1,1, 0,0, 1,0,\
|
|
1,1, 0,1, 0,0,\
|
|
0,1, 1,0, 1,1,\
|
|
0,1, 0,0, 1,0
|
|
|
|
#define S3L_SIN_TABLE_LENGTH 128
|
|
static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] =
|
|
{
|
|
/* 511 was chosen here as a highest number that doesn't overflow during
|
|
compilation for S3L_FRACTIONS_PER_UNIT == 1024 */
|
|
|
|
(0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
|
|
};
|
|
|
|
#define S3L_SIN_TABLE_UNIT_STEP\
|
|
(S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4))
|
|
|
|
typedef int16_t S3L_ScreenCoord;
|
|
typedef uint16_t S3L_Index;
|
|
|
|
/**
|
|
Vector that consists of four scalars and can represent homogenous
|
|
coordinates, but is generally also used as Vec3 and Vec2.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Unit x;
|
|
S3L_Unit y;
|
|
S3L_Unit z;
|
|
S3L_Unit w;
|
|
} S3L_Vec4;
|
|
|
|
#define S3L_writeVec4(v)\
|
|
printf("Vec4: %d %d %d %d\n",((v).x),((v).y),((v).z),((v).w))
|
|
|
|
static inline void S3L_initVec4(S3L_Vec4 *v)
|
|
{
|
|
v->x = 0; v->y = 0; v->z = 0; v->w = S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
typedef S3L_Unit S3L_Mat4[4][4]; /**< 4x4 matrix, used mostly for 3D
|
|
transforms. The indexing is this:
|
|
matrix[column][row]. */
|
|
#define S3L_writeMat4(m)\
|
|
printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\
|
|
,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\
|
|
(m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\
|
|
(m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\
|
|
(m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3])
|
|
|
|
/**
|
|
Initializes a 4x4 matrix to identity.
|
|
*/
|
|
static inline void S3L_initMat4(S3L_Mat4 *m)
|
|
{
|
|
#define M(x,y) (*m)[x][y]
|
|
#define S S3L_FRACTIONS_PER_UNIT
|
|
|
|
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
/**
|
|
Multiplies a vector by a matrix with normalization by S3L_FRACTIONS_PER_UNIT.
|
|
Result is stored in the input vector.
|
|
*/
|
|
|
|
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
|
|
{
|
|
S3L_Vec4 vBackup;
|
|
|
|
vBackup.x = v->x;
|
|
vBackup.y = v->y;
|
|
vBackup.z = v->z;
|
|
vBackup.w = v->w;
|
|
|
|
// TODO: try alternative operation orders to optimize
|
|
|
|
#define dot(col)\
|
|
(vBackup.x * (*m)[col][0]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.y * (*m)[col][1]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.z * (*m)[col][2]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.w * (*m)[col][3]) / S3L_FRACTIONS_PER_UNIT
|
|
|
|
v->x = dot(0);
|
|
v->y = dot(1);
|
|
v->z = dot(2);
|
|
v->w = dot(3);
|
|
|
|
#undef dot
|
|
}
|
|
|
|
// general helper functions
|
|
|
|
static inline int16_t S3L_abs(int16_t value)
|
|
{
|
|
return value >= 0 ? value : -1 * value;
|
|
}
|
|
|
|
static inline int16_t S3L_min(int16_t v1, int16_t v2)
|
|
{
|
|
return v1 >= v2 ? v2 : v1;
|
|
}
|
|
|
|
static inline int16_t S3L_max(int16_t v1, int16_t v2)
|
|
{
|
|
return v1 >= v2 ? v1 : v2;
|
|
}
|
|
|
|
static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod)
|
|
{
|
|
return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
|
|
}
|
|
|
|
static inline S3L_Unit S3L_nonZero(S3L_Unit value)
|
|
{
|
|
return value != 0 ? value : 1;
|
|
}
|
|
|
|
/**
|
|
Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT. Result
|
|
is stored in the first matrix.
|
|
*/
|
|
void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2)
|
|
{
|
|
S3L_Mat4 mat1;
|
|
|
|
for (uint16_t row = 0; row < 4; ++row)
|
|
for (uint16_t col = 0; col < 4; ++col)
|
|
mat1[col][row] = (*m1)[col][row];
|
|
|
|
for (uint16_t row = 0; row < 4; ++row)
|
|
for (uint16_t col = 0; col < 4; ++col)
|
|
{
|
|
(*m1)[col][row] = 0;
|
|
|
|
for (uint16_t i = 0; i < 4; ++i)
|
|
(*m1)[col][row] +=
|
|
(mat1[i][row] * (*m2)[col][i]) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
}
|
|
|
|
S3L_Unit S3L_sin(S3L_Unit x)
|
|
{
|
|
x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4);
|
|
int8_t positive = 1;
|
|
|
|
if (x < S3L_SIN_TABLE_LENGTH)
|
|
x = x;
|
|
else if (x < S3L_SIN_TABLE_LENGTH * 2)
|
|
x = S3L_SIN_TABLE_LENGTH * 2 - x - 1;
|
|
else if (x < S3L_SIN_TABLE_LENGTH * 3)
|
|
{
|
|
x = x - S3L_SIN_TABLE_LENGTH * 2;
|
|
positive = 0;
|
|
}
|
|
else
|
|
{
|
|
x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1;
|
|
positive = 0;
|
|
}
|
|
|
|
return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x];
|
|
}
|
|
|
|
static inline S3L_Unit S3L_cos(S3L_Unit x)
|
|
{
|
|
return S3L_sin(x - S3L_FRACTIONS_PER_UNIT / 4);
|
|
}
|
|
|
|
void S3L_makeTranslationMat(
|
|
S3L_Unit offsetX, S3L_Unit offsetY, S3L_Unit offsetZ, S3L_Mat4 *m)
|
|
{
|
|
#define M(x,y) (*m)[x][y]
|
|
#define S S3L_FRACTIONS_PER_UNIT
|
|
|
|
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
/**
|
|
Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with
|
|
S3L_FRACTIONS_PER_UNIT!
|
|
*/
|
|
void S3L_makeScaleMatrix(
|
|
S3L_Unit scaleX, S3L_Unit scaleY, S3L_Unit scaleZ, S3L_Mat4 *m)
|
|
{
|
|
#define M(x,y) (*m)[x][y]
|
|
|
|
M(0,0) = scaleX; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = scaleY; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = scaleZ; M(3,2) = 0;
|
|
M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_FRACTIONS_PER_UNIT;
|
|
|
|
#undef M
|
|
}
|
|
|
|
/**
|
|
Makes a rotation matrix. For the rotation conventions (meaning, order, units)
|
|
see the appropriate structure comments.
|
|
*/
|
|
void S3L_makeRotationMatrix(
|
|
S3L_Unit aroundX, S3L_Unit aroundY, S3L_Unit aroundZ, S3L_Mat4 *m)
|
|
{
|
|
S3L_Unit sx = S3L_sin(aroundX);
|
|
S3L_Unit sy = S3L_sin(aroundY);
|
|
S3L_Unit sz = S3L_sin(aroundZ);
|
|
|
|
S3L_Unit cx = S3L_cos(aroundX);
|
|
S3L_Unit cy = S3L_cos(aroundY);
|
|
S3L_Unit cz = S3L_cos(aroundZ);
|
|
|
|
#define M(x,y) (*m)[x][y]
|
|
#define S S3L_FRACTIONS_PER_UNIT
|
|
|
|
M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S);
|
|
M(1,0) = (cx * sz) / S;
|
|
M(2,0) = (cy * sx * sz) / (S * S) - (cz * sy) / S;
|
|
M(3,0) = 0;
|
|
|
|
M(0,1) = (cz * sy * sx) / (S * S) - (cy * sz) / S;
|
|
M(1,1) = (cx * cz) / S;
|
|
M(2,1) = (cy * cz * sx) / (S * S) + (sy * sz) / S;
|
|
M(3,1) = 0;
|
|
|
|
M(0,2) = (cx * sy) / S;
|
|
M(1,2) = -1 * sx;
|
|
M(2,2) = (cy * cx) / S;
|
|
M(3,2) = 0;
|
|
|
|
M(0,3) = 0;
|
|
M(1,3) = 0;
|
|
M(2,3) = 0;
|
|
M(3,3) = S3L_FRACTIONS_PER_UNIT;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Vec4 translation;
|
|
S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order:
|
|
1. z = around z (roll) CW looking along z+
|
|
2. x = around x (pitch) CW looking along x+
|
|
3. y = around y (yaw) CW looking along y+ */
|
|
S3L_Vec4 scale;
|
|
} S3L_Transform3D;
|
|
|
|
static inline void S3L_initTransoform3D(S3L_Transform3D *t)
|
|
{
|
|
S3L_initVec4(&(t->translation));
|
|
S3L_initVec4(&(t->rotation));
|
|
t->scale.x = S3L_FRACTIONS_PER_UNIT;
|
|
t->scale.y = S3L_FRACTIONS_PER_UNIT;
|
|
t->scale.z = S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Unit focalLength; ///< Defines the field of view (FOV).
|
|
S3L_Transform3D transform;
|
|
} S3L_Camera;
|
|
|
|
static inline void S3L_initCamera(S3L_Camera *c)
|
|
{
|
|
c->focalLength = S3L_FRACTIONS_PER_UNIT;
|
|
S3L_initTransoform3D(&(c->transform));
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
S3L_ScreenCoord x; ///< Screen X coordinate.
|
|
S3L_ScreenCoord y; ///< Screen Y coordinate.
|
|
|
|
S3L_Unit barycentric0; /**< Barycentric coord 0 (corresponds to 1st vertex).
|
|
Together with 1 and 2 coords these serve to
|
|
locate the pixel on a triangle and interpolate
|
|
values between it's three points. The sum of the
|
|
three coordinates will always be exactly
|
|
S3L_FRACTIONS_PER_UNIT. */
|
|
S3L_Unit barycentric1; ///< Baryc. coord 1 (corresponds to 2nd vertex).
|
|
S3L_Unit barycentric2; ///< Baryc. coord 2 (corresponds to 3rd vertex).
|
|
S3L_Index triangleID;
|
|
} S3L_PixelInfo;
|
|
|
|
static inline void S3L_initPixelInfo(S3L_PixelInfo *p)
|
|
{
|
|
p->x = 0;
|
|
p->y = 0;
|
|
p->barycentric0 = S3L_FRACTIONS_PER_UNIT;
|
|
p->barycentric1 = 0;
|
|
p->barycentric2 = 0;
|
|
p->triangleID = 0;
|
|
}
|
|
|
|
#define S3L_BACKFACE_CULLING_NONE 0
|
|
#define S3L_BACKFACE_CULLING_CW 1
|
|
#define S3L_BACKFACE_CULLING_CCW 2
|
|
|
|
#define S3L_MODE_TRIANGLES 0
|
|
#define S3L_MODE_LINES 1
|
|
#define S3L_MODE_POINTS 2
|
|
|
|
typedef struct
|
|
{
|
|
int backfaceCulling;
|
|
int mode;
|
|
} S3L_DrawConfig;
|
|
|
|
void S3L_initDrawConfig(S3L_DrawConfig *config)
|
|
{
|
|
config->backfaceCulling = 1;
|
|
config->mode = S3L_MODE_TRIANGLES;
|
|
}
|
|
|
|
void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl
|
|
|
|
/**
|
|
Interpolated between two values, v1 and v2, in the same ratio as t is to
|
|
tMax. Does NOT prevent zero division.
|
|
*/
|
|
static inline int16_t S3L_interpolate(int16_t v1, int16_t v2, int16_t t,
|
|
int16_t tMax)
|
|
{
|
|
return v1 + ((v2 - v1) * t) / tMax;
|
|
}
|
|
|
|
/**
|
|
Like S3L_interpolate, but uses a parameter that goes from 0 to
|
|
S3L_FRACTIONS_PER_UNIT - 1, which can be faster.
|
|
*/
|
|
static inline int16_t S3L_interpolateByUnit(int16_t v1, int16_t v2, int16_t t)
|
|
{
|
|
return v1 + ((v2 - v1) * t) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
// TODO: change parameters in interpolation functions to S3L_Unit
|
|
|
|
/**
|
|
Same as S3L_interpolate but with v1 = 0. Should be faster.
|
|
*/
|
|
static inline int16_t S3L_interpolateByUnitFrom0(int16_t v2, int16_t t)
|
|
{
|
|
return (v2 * t) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
int16_t steps;
|
|
int16_t err;
|
|
S3L_ScreenCoord x;
|
|
S3L_ScreenCoord y;
|
|
|
|
int16_t *majorCoord;
|
|
int16_t *minorCoord;
|
|
int16_t majorIncrement;
|
|
int16_t minorIncrement;
|
|
int16_t majorDiff;
|
|
int16_t minorDiff;
|
|
} S3L_BresenhamState; ///< State of drawing a line with Bresenham algorithm.
|
|
|
|
typedef struct
|
|
{
|
|
S3L_ScreenCoord p0[2]; ///< 2D coordinates of the 1st point projection
|
|
S3L_ScreenCoord p1[2]; ///< 2D coordinates of the 2nd point projection
|
|
|
|
S3L_Unit a[3]; ///< 3D coordinates of the 1st projected point of the line
|
|
S3L_Unit b[3]; ///< 3D coordinates of the 2nd projected point of the line
|
|
S3L_Unit pointDifference[3]; ///< [bx - ax, by - ay, bz - cz]
|
|
|
|
S3L_ScreenCoord c[2]; /**< helper point to for a plane for the intersection
|
|
with line */
|
|
|
|
S3L_Unit fcx; ///< precomputed helper product
|
|
S3L_Unit fcy; ///< precomputed helper product
|
|
|
|
S3L_Unit focalLength;
|
|
} S3L_PerspectiveCorrectionState; ///< State for computing persp. correction.
|
|
|
|
/**
|
|
Initializes the state of perspective correction along a line. The correction
|
|
itself is then done using S3L_correctPerspective function, using the state.
|
|
*/
|
|
void S3L_initPerspectiveCorrectionState(
|
|
S3L_ScreenCoord x0,
|
|
S3L_ScreenCoord y0,
|
|
S3L_Unit depth0,
|
|
S3L_ScreenCoord x1,
|
|
S3L_ScreenCoord y1,
|
|
S3L_Unit depth1,
|
|
S3L_Unit focalLength,
|
|
S3L_PerspectiveCorrectionState *state)
|
|
{
|
|
state->focalLength = focalLength;
|
|
|
|
state->p0[0] = x0;
|
|
state->p0[1] = y0;
|
|
|
|
state->p1[0] = x1;
|
|
state->p1[1] = y1;
|
|
|
|
state->a[0] = (x0 * (depth0 + focalLength)) / focalLength;
|
|
state->a[1] = (y0 * (depth0 + focalLength)) / focalLength;
|
|
state->a[2] = depth0;
|
|
|
|
state->b[0] = (x1 * (depth1 + focalLength)) / focalLength;
|
|
state->b[1] = (y1 * (depth1 + focalLength)) / focalLength;
|
|
state->b[2] = depth1;
|
|
|
|
state->pointDifference[0] = state->b[0] - state->a[0];
|
|
state->pointDifference[1] = state->b[1] - state->a[1];
|
|
state->pointDifference[2] = state->b[2] - state->a[2];
|
|
|
|
state->c[0] = x1 + y1 - y0;
|
|
state->c[1] = y1 - x1 + x0;
|
|
|
|
state->fcx = focalLength * state->c[0];
|
|
state->fcy = focalLength * state->c[1];
|
|
}
|
|
|
|
S3L_Unit S3L_correctPerspective(
|
|
S3L_Unit interpolationParameter, S3L_PerspectiveCorrectionState *state)
|
|
{
|
|
S3L_Unit p[2]; // lin. interpolated position between the projections
|
|
|
|
// TODO: perhaps this could be interpolated faster by stepping?
|
|
p[0] =
|
|
S3L_interpolateByUnit(state->p0[0],state->p1[0],interpolationParameter);
|
|
|
|
p[1] =
|
|
S3L_interpolateByUnit(state->p0[1],state->p1[1],interpolationParameter);
|
|
|
|
S3L_Unit a, b, c, d; // plane coeficients
|
|
|
|
a = state->focalLength * p[1] - state->fcy;
|
|
b = state->fcx - state->focalLength * p[0];
|
|
c = p[0] * state->c[1] - p[1] * state->c[0];
|
|
d = state->focalLength * c;
|
|
|
|
a >>= 4; // TODO: this sometimes prevents overflow, but should be solved better!
|
|
b >>= 4;
|
|
c >>= 4;
|
|
d >>= 4;
|
|
|
|
S3L_Unit result =
|
|
(
|
|
- a * state->a[0] - b * state->a[1] - c * state->a[2] - d
|
|
)
|
|
/
|
|
S3L_nonZero(
|
|
(
|
|
a * state->pointDifference[0] +
|
|
b * state->pointDifference[1] +
|
|
c * state->pointDifference[2]
|
|
) / S3L_FRACTIONS_PER_UNIT
|
|
);
|
|
|
|
return result < 0 ? 0 :
|
|
(result > S3L_FRACTIONS_PER_UNIT ? S3L_FRACTIONS_PER_UNIT : result);
|
|
}
|
|
|
|
/**
|
|
Returns a value interpolated between the three triangle vertices based on
|
|
barycentric coordinates.
|
|
*/
|
|
static inline S3L_Unit S3L_interpolateBarycentric(
|
|
S3L_Unit value0, S3L_Unit value1, S3L_Unit value2,
|
|
S3L_Unit barycentric0, S3L_Unit barycentric1, S3L_Unit barycentric2)
|
|
{
|
|
return
|
|
(
|
|
(value0 * barycentric0) +
|
|
(value1 * barycentric1) +
|
|
(value2 * barycentric2)
|
|
) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
/**
|
|
Same as S3L_interpolate but with v1 = 0. Should be faster.
|
|
*/
|
|
static inline int16_t S3L_interpolateFrom0(int16_t v2, int16_t t, int16_t tMax)
|
|
{
|
|
return (v2 * t) / tMax;
|
|
}
|
|
|
|
void S3L_bresenhamInit(S3L_BresenhamState *state, int16_t x0, int16_t y0,
|
|
int16_t x1, int16_t y1)
|
|
{
|
|
int16_t dx = x1 - x0;
|
|
int16_t dy = y1 - y0;
|
|
|
|
int16_t absDx = S3L_abs(dx);
|
|
int16_t absDy = S3L_abs(dy);
|
|
|
|
if (absDx >= absDy)
|
|
{
|
|
state->majorCoord = &(state->x);
|
|
state->minorCoord = &(state->y);
|
|
|
|
state->minorDiff = 2 * absDy;
|
|
state->majorDiff = 2 * absDx;
|
|
state->err = 2 * dy - dx;
|
|
|
|
state->majorIncrement = dx >= 0 ? 1 : -1;
|
|
state->minorIncrement = dy >= 0 ? 1 : -1;
|
|
|
|
state->steps = absDx;
|
|
}
|
|
else
|
|
{
|
|
state->majorCoord = &(state->y);
|
|
state->minorCoord = &(state->x);
|
|
|
|
state->minorDiff = 2 * absDx;
|
|
state->majorDiff = 2 * absDy;
|
|
state->err = 2 * dx - dy;
|
|
|
|
state->majorIncrement = dy >= 0 ? 1 : -1;
|
|
state->minorIncrement = dx >= 0 ? 1 : -1;
|
|
|
|
state->steps = absDy;
|
|
}
|
|
|
|
state->x = x0;
|
|
state->y = y0;
|
|
}
|
|
|
|
int S3L_bresenhamStep(S3L_BresenhamState *state)
|
|
{
|
|
state->steps--;
|
|
|
|
(*state->majorCoord) += state->majorIncrement;
|
|
|
|
if (state->err > 0)
|
|
{
|
|
(*state->minorCoord) += state->minorIncrement;
|
|
state->err -= state->majorDiff;
|
|
}
|
|
|
|
state->err += state->minorDiff;
|
|
|
|
return state->steps >= 0;
|
|
}
|
|
|
|
static inline void S3L_mapProjectionPlaneToScreen(S3L_Vec4 point,
|
|
S3L_ScreenCoord *screenX, S3L_ScreenCoord *screenY)
|
|
{
|
|
*screenX =
|
|
S3L_HALF_RESOLUTION_X +
|
|
(point.x * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
|
|
|
|
*screenY =
|
|
S3L_HALF_RESOLUTION_Y -
|
|
(point.y * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
void _S3L_drawFilledTriangle(
|
|
S3L_Vec4 point0,
|
|
S3L_Vec4 point1,
|
|
S3L_Vec4 point2,
|
|
const S3L_Camera *camera,
|
|
S3L_PixelInfo *p)
|
|
{
|
|
S3L_ScreenCoord x0, y0, x1, y1, x2, y2;
|
|
S3L_Vec4 *tPointPP, *lPointPP, *rPointPP; // points in projction plane space
|
|
|
|
S3L_mapProjectionPlaneToScreen(point0,&x0,&y0);
|
|
S3L_mapProjectionPlaneToScreen(point1,&x1,&y1);
|
|
S3L_mapProjectionPlaneToScreen(point2,&x2,&y2);
|
|
|
|
S3L_ScreenCoord
|
|
tPointSx, tPointSy, // top point coords, in screen space
|
|
lPointSx, lPointSy, // left point coords, in screen space
|
|
rPointSx, rPointSy; // right point coords, in screen space
|
|
|
|
S3L_Unit *barycentric0; // bar. coord that gets higher from L to R
|
|
S3L_Unit *barycentric1; // bar. coord that gets higher from R to L
|
|
S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up
|
|
|
|
// Sort the points.
|
|
|
|
#define assignPoints(t,a,b)\
|
|
{\
|
|
tPointSx = x##t;\
|
|
tPointSy = y##t;\
|
|
tPointPP = &point##t;\
|
|
barycentric2 = &(p->barycentric##t);\
|
|
int16_t aDx = x##a - x##t;\
|
|
int16_t bDx = x##b - x##t;\
|
|
int16_t aDy = S3L_nonZero(y##a - y##t);\
|
|
int16_t bDy = S3L_nonZero(y##b - y##t);\
|
|
if ((aDx << 4) / aDy < (bDx << 4) / bDy)\
|
|
/*if (x##a <= x##b)*/\
|
|
{\
|
|
lPointSx = x##a; lPointSy = y##a;\
|
|
rPointSx = x##b; rPointSy = y##b;\
|
|
lPointPP = &point##a; rPointPP = &point##b;\
|
|
barycentric0 = &(p->barycentric##b);\
|
|
barycentric1 = &(p->barycentric##a);\
|
|
}\
|
|
else\
|
|
{\
|
|
lPointSx = x##b; lPointSy = y##b;\
|
|
rPointSx = x##a; rPointSy = y##a;\
|
|
lPointPP = &point##b; rPointPP = &point##a;\
|
|
barycentric0 = &(p->barycentric##a);\
|
|
barycentric1 = &(p->barycentric##b);\
|
|
}\
|
|
}
|
|
|
|
if (y0 <= y1)
|
|
{
|
|
if (y0 <= y2)
|
|
assignPoints(0,1,2)
|
|
else
|
|
assignPoints(2,0,1)
|
|
}
|
|
else
|
|
{
|
|
if (y1 <= y2)
|
|
assignPoints(1,0,2)
|
|
else
|
|
assignPoints(2,0,1)
|
|
}
|
|
|
|
// Now draw the triangle line by line.
|
|
|
|
#undef assignPoints
|
|
|
|
S3L_ScreenCoord splitY; // Y of the vertically middle point of the triangle
|
|
S3L_ScreenCoord endY; // bottom Y of the whole triangle
|
|
int splitOnLeft; // whether splitY happens on L or R side
|
|
|
|
if (rPointSy <= lPointSy)
|
|
{
|
|
splitY = rPointSy;
|
|
splitOnLeft = 0;
|
|
endY = lPointSy;
|
|
}
|
|
else
|
|
{
|
|
splitY = lPointSy;
|
|
splitOnLeft = 1;
|
|
endY = rPointSy;
|
|
}
|
|
|
|
S3L_ScreenCoord currentY = tPointSy;
|
|
|
|
/* We'll be using an algorithm similar to Bresenham line algorithm. The
|
|
specifics of this algorithm are among others:
|
|
|
|
- drawing possibly a NON-CONTINUOUS line
|
|
- NOT tracing the line exactly, but rather rasterizing one the right
|
|
side of it, according to the pixel CENTERS, INCLUDING the pixel
|
|
centers
|
|
|
|
The principle is this:
|
|
|
|
- Move vertically by pixels and accumulate the error (abs(dx/dy)).
|
|
- If the error is greater than one (crossed the next pixel center), keep
|
|
moving horizontally and substracting 1 from the error until it is less
|
|
than 1 again.
|
|
- To make this INTEGER ONLY, scale the case so that distance between
|
|
pixels is equal to dy (instead of 1). This way the error becomes
|
|
dx/dy * dy == dx, and we're comparing the error to (and potentially
|
|
substracting) 1 * dy == dy. */
|
|
|
|
int16_t
|
|
/* triangle side:
|
|
left right */
|
|
lX, rX, // current x position on the screen
|
|
lDx, rDx, // dx (end point - start point)
|
|
lDy, rDy, // dy (end point - start point)
|
|
lInc, rInc, // direction in which to increment (1 or -1)
|
|
lErr, rErr, // current error (Bresenham)
|
|
lErrCmp, rErrCmp, // helper for deciding comparison (> vs >=)
|
|
lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
|
|
lErrSub, rErrSub; // error value to substract when moving in x direction
|
|
|
|
S3L_Unit
|
|
lSideStep, rSideStep,
|
|
lSideUnitPosScaled, rSideUnitPosScaled;
|
|
|
|
/* init side for the algorithm, params:
|
|
s - which side (l or r)
|
|
p1 - point from (t, l or r)
|
|
p2 - point to (t, l or r)
|
|
down - whether the side coordinate goes top-down or vice versa
|
|
*/
|
|
#define initSide(s,p1,p2,down)\
|
|
s##X = p1##PointSx;\
|
|
s##Dx = p2##PointSx - p1##PointSx;\
|
|
s##Dy = p2##PointSy - p1##PointSy;\
|
|
s##SideStep = (S3L_FRACTIONS_PER_UNIT << S3L_LERP_QUALITY)\
|
|
/ (s##Dy != 0 ? s##Dy : 1);\
|
|
s##SideUnitPosScaled = 0;\
|
|
if (!down)\
|
|
{\
|
|
s##SideUnitPosScaled = S3L_FRACTIONS_PER_UNIT << S3L_LERP_QUALITY;\
|
|
s##SideStep *= -1;\
|
|
}\
|
|
s##Inc = s##Dx >= 0 ? 1 : -1;\
|
|
if (s##Dx < 0)\
|
|
{s##Err = 0; s##ErrCmp = 0;}\
|
|
else\
|
|
{s##Err = s##Dy; s##ErrCmp = 1;}\
|
|
s##ErrAdd = S3L_abs(s##Dx);\
|
|
s##ErrSub = s##Dy != 0 ? s##Dy : 1; /* don't allow 0, could lead to an
|
|
infinite substracting loop */
|
|
|
|
#define stepSide(s)\
|
|
while (s##Err - s##Dy >= s##ErrCmp)\
|
|
{\
|
|
s##X += s##Inc;\
|
|
s##Err -= s##ErrSub;\
|
|
}\
|
|
s##Err += s##ErrAdd;
|
|
|
|
initSide(r,t,r,1)
|
|
initSide(l,t,l,1)
|
|
|
|
#define initPC(f,t,pc)\
|
|
S3L_initPerspectiveCorrectionState(\
|
|
f##PointPP->x,\
|
|
f##PointPP->y,\
|
|
f##PointPP->z,\
|
|
t##PointPP->x,\
|
|
t##PointPP->y,\
|
|
t##PointPP->z,\
|
|
camera->focalLength,\
|
|
&pc##PC);
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
S3L_PerspectiveCorrectionState lPC, rPC, rowPC;
|
|
int8_t topPart = 1; // whether drawing top or bottom part of the triangle
|
|
|
|
initPC(t,l,l)
|
|
initPC(t,r,r)
|
|
#endif
|
|
|
|
while (currentY < endY) /* draw the triangle from top to bottom -- the
|
|
bottom-most row is left out because, following
|
|
from the rasterization rules (see top of the
|
|
source), it is to never be rasterized. */
|
|
{
|
|
if (currentY == splitY) // reached a vertical split of the triangle?
|
|
{ // then reinit one side
|
|
#define manageSplit(b0,b1,s)\
|
|
S3L_Unit *tmp = barycentric##b0;\
|
|
barycentric##b0 = barycentric##b1;\
|
|
barycentric##b1 = tmp;\
|
|
s##SideUnitPosScaled =\
|
|
(S3L_FRACTIONS_PER_UNIT << S3L_LERP_QUALITY) - s##SideUnitPosScaled;\
|
|
s##SideStep *= -1;
|
|
|
|
if (splitOnLeft)
|
|
{
|
|
initSide(l,l,r,0);
|
|
manageSplit(0,2,r)
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
initPC(l,r,l)
|
|
initPC(r,t,r)
|
|
topPart = 0;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
initSide(r,r,l,0);
|
|
manageSplit(1,2,l)
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
initPC(r,l,r)
|
|
initPC(l,t,l)
|
|
topPart = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
stepSide(r)
|
|
stepSide(l)
|
|
|
|
p->y = currentY;
|
|
|
|
// draw the horizontal line
|
|
|
|
S3L_Unit rowLength = S3L_nonZero(rX - lX - 1); // prevent zero div
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
S3L_Unit lDepth, rDepth, lT, rT;
|
|
|
|
lT = S3L_correctPerspective(lSideUnitPosScaled >> S3L_LERP_QUALITY,&lPC);
|
|
rT = S3L_correctPerspective(rSideUnitPosScaled >> S3L_LERP_QUALITY,&rPC);
|
|
|
|
lDepth = S3L_interpolateByUnit(lPC.a[2],lPC.b[2],lT);
|
|
rDepth = S3L_interpolateByUnit(rPC.a[2],rPC.b[2],rT);
|
|
|
|
S3L_initPerspectiveCorrectionState(
|
|
S3L_interpolateByUnit(lPC.a[0],lPC.b[0],lT),
|
|
S3L_interpolateByUnit(lPC.a[1],lPC.b[1],lT),
|
|
lDepth,
|
|
S3L_interpolateByUnit(rPC.a[0],rPC.b[0],rT),
|
|
S3L_interpolateByUnit(rPC.a[1],rPC.b[1],rT),
|
|
rDepth,
|
|
camera->focalLength,
|
|
&rowPC
|
|
);
|
|
#else
|
|
S3L_Unit b0 = 0;
|
|
S3L_Unit b1 = lSideUnitPosScaled;
|
|
|
|
S3L_Unit b0Step = rSideUnitPosScaled / rowLength;
|
|
S3L_Unit b1Step = lSideUnitPosScaled / rowLength;
|
|
#endif
|
|
|
|
for (S3L_ScreenCoord x = lX; x < rX; ++x)
|
|
{
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
S3L_Unit rowT =
|
|
S3L_correctPerspective(S3L_interpolateFrom0(S3L_FRACTIONS_PER_UNIT,
|
|
x - lX,rowLength),&rowPC);
|
|
|
|
*barycentric0 = S3L_interpolateByUnitFrom0(rT,rowT);
|
|
*barycentric1 = S3L_interpolateByUnit(lT,0,rowT);
|
|
#else
|
|
*barycentric0 = b0 >> S3L_LERP_QUALITY;
|
|
*barycentric1 = b1 >> S3L_LERP_QUALITY;
|
|
|
|
b0 += b0Step;
|
|
b1 -= b1Step;
|
|
#endif
|
|
|
|
*barycentric2 = S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1;
|
|
|
|
p->x = x;
|
|
S3L_PIXEL_FUNCTION(p);
|
|
}
|
|
|
|
lSideUnitPosScaled += lSideStep;
|
|
rSideUnitPosScaled += rSideStep;
|
|
|
|
++currentY;
|
|
}
|
|
|
|
#undef manageSplit
|
|
#undef initPC
|
|
#undef initSide
|
|
#undef stepSide
|
|
}
|
|
|
|
/**
|
|
Draws a triangle according to given config. The vertices are specified in
|
|
projection-plane space (NOT screen space!) -- they wll be mapped to screen
|
|
space by thies function. If perspective correction is enabled, each vertex
|
|
has to have a depth (Z position in camera space) specified in the Z
|
|
component.
|
|
*/
|
|
void S3L_drawTriangle(S3L_Vec4 point0, S3L_Vec4 point1, S3L_Vec4 point2,
|
|
const S3L_DrawConfig *config, const S3L_Camera *camera,
|
|
S3L_Index triangleID)
|
|
{
|
|
|
|
if (config->backfaceCulling != S3L_BACKFACE_CULLING_NONE)
|
|
{
|
|
|
|
int32_t winding = // determines CW or CCW
|
|
(
|
|
(point1.y - point0.y) * (point2.x - point1.x) -
|
|
(point1.x - point0.x) * (point2.y - point1.y)
|
|
);
|
|
|
|
if ((config->backfaceCulling == S3L_BACKFACE_CULLING_CW && winding < 0) ||
|
|
(config->backfaceCulling == S3L_BACKFACE_CULLING_CCW && winding >= 0))
|
|
return;
|
|
}
|
|
|
|
S3L_PixelInfo p;
|
|
S3L_initPixelInfo(&p);
|
|
p.triangleID = triangleID;
|
|
|
|
if (config->mode == S3L_MODE_TRIANGLES) // triangle mode
|
|
{
|
|
/* This function will perform the mapping to screen space itself, it needs
|
|
the original values, hence no conversion here. */
|
|
_S3L_drawFilledTriangle(point0,point1,point2,camera,&p);
|
|
return;
|
|
}
|
|
|
|
// map to screen space
|
|
|
|
S3L_ScreenCoord x0, y0, x1, y1, x2, y2;
|
|
|
|
S3L_mapProjectionPlaneToScreen(point0,&x0,&y0);
|
|
S3L_mapProjectionPlaneToScreen(point1,&x1,&y1);
|
|
S3L_mapProjectionPlaneToScreen(point2,&x2,&y2);
|
|
|
|
if (config->mode == S3L_MODE_LINES) // line mode
|
|
{
|
|
S3L_BresenhamState line;
|
|
S3L_Unit lineLen;
|
|
|
|
#define drawLine(p1,p2)\
|
|
S3L_bresenhamInit(&line,x##p1,y##p1,x##p2,y##p2);\
|
|
p.barycentric0 = 0;\
|
|
p.barycentric1 = 0;\
|
|
p.barycentric2 = 0;\
|
|
lineLen = S3L_nonZero(line.steps);\
|
|
do\
|
|
{\
|
|
p.x = line.x; p.y = line.y;\
|
|
p.barycentric##p1 = S3L_interpolateFrom0(\
|
|
S3L_FRACTIONS_PER_UNIT,line.steps,lineLen); \
|
|
p.barycentric##p2 = S3L_FRACTIONS_PER_UNIT - p.barycentric##p1;\
|
|
S3L_PIXEL_FUNCTION(&p);\
|
|
} while (S3L_bresenhamStep(&line));
|
|
|
|
drawLine(0,1)
|
|
drawLine(2,0)
|
|
drawLine(1,2)
|
|
|
|
#undef drawLine
|
|
}
|
|
else // point mode
|
|
{
|
|
p.x = x0; p.y = y0; p.barycentric0 = S3L_FRACTIONS_PER_UNIT;
|
|
p.barycentric1 = 0; p.barycentric2 = 0;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
|
|
p.x = x1; p.y = y1; p.barycentric0 = 0;
|
|
p.barycentric1 = S3L_FRACTIONS_PER_UNIT; p.barycentric2 = 0;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
|
|
p.x = x2; p.y = y2; p.barycentric0 = 0;
|
|
p.barycentric1 = 0; p.barycentric2 = S3L_FRACTIONS_PER_UNIT;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
}
|
|
}
|
|
|
|
static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle)
|
|
{
|
|
if (angle < S3L_SIN_TABLE_UNIT_STEP)
|
|
return; // no visible rotation
|
|
|
|
S3L_Unit angleSin = S3L_sin(angle);
|
|
S3L_Unit angleCos = S3L_cos(angle);
|
|
|
|
S3L_Unit xBackup = *x;
|
|
|
|
*x =
|
|
(angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT -
|
|
(angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT;
|
|
|
|
*y =
|
|
(angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT +
|
|
(angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m)
|
|
{
|
|
S3L_makeScaleMatrix(
|
|
worldTransform.scale.x,
|
|
worldTransform.scale.y,
|
|
worldTransform.scale.z,
|
|
m
|
|
);
|
|
|
|
S3L_Mat4 t;
|
|
|
|
S3L_makeRotationMatrix(
|
|
worldTransform.rotation.x,
|
|
worldTransform.rotation.y,
|
|
worldTransform.rotation.z,
|
|
&t);
|
|
|
|
S3L_mat4Xmat4(m,&t);
|
|
|
|
S3L_makeTranslationMat(
|
|
worldTransform.translation.x,
|
|
worldTransform.translation.y,
|
|
worldTransform.translation.z,
|
|
&t);
|
|
|
|
S3L_mat4Xmat4(m,&t);
|
|
}
|
|
|
|
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m)
|
|
{
|
|
S3L_makeTranslationMat(
|
|
-1 * cameraTransform.translation.x,
|
|
-1 * cameraTransform.translation.y,
|
|
-1 * cameraTransform.translation.z,
|
|
m);
|
|
}
|
|
|
|
static inline void S3L_zDivide(S3L_Vec4 *vector)
|
|
{
|
|
vector->x = (vector->x * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(vector->z);
|
|
vector->y = (vector->y * S3L_FRACTIONS_PER_UNIT) / S3L_nonZero(vector->z);
|
|
}
|
|
|
|
void S3L_drawModelIndexed(
|
|
const S3L_Unit coords[],
|
|
const S3L_Index triangleVertexIndices[],
|
|
uint16_t triangleCount,
|
|
S3L_Transform3D modelTransform,
|
|
const S3L_Camera *camera,
|
|
const S3L_DrawConfig *config)
|
|
{
|
|
S3L_Index triangleIndex = 0;
|
|
S3L_Index coordIndex = 0;
|
|
|
|
S3L_Vec4 pointModel, transformed0, transformed1, transformed2;
|
|
S3L_Unit indexIndex;
|
|
|
|
pointModel.w = S3L_FRACTIONS_PER_UNIT; // has to be "1.0" for translation
|
|
|
|
S3L_Mat4 mat1, mat2;
|
|
|
|
S3L_makeWorldMatrix(modelTransform,&mat1);
|
|
S3L_makeCameraMatrix(camera->transform,&mat2);
|
|
S3L_mat4Xmat4(&mat1,&mat2);
|
|
|
|
while (triangleIndex < triangleCount)
|
|
{
|
|
#define project(n)\
|
|
indexIndex = triangleVertexIndices[coordIndex] * 3;\
|
|
pointModel.x = coords[indexIndex];\
|
|
++indexIndex; /* TODO: put into square brackets? */\
|
|
pointModel.y = coords[indexIndex];\
|
|
++indexIndex;\
|
|
pointModel.z = coords[indexIndex];\
|
|
++coordIndex;\
|
|
S3L_vec4Xmat4(&pointModel,&mat1);\
|
|
transformed##n.x = pointModel.x;\
|
|
transformed##n.y = pointModel.y;\
|
|
transformed##n.z = pointModel.z;\
|
|
S3L_zDivide(&transformed##n);
|
|
|
|
project(0)
|
|
project(1)
|
|
project(2)
|
|
|
|
S3L_drawTriangle(transformed0,transformed1,transformed2,config,camera,
|
|
triangleIndex);
|
|
|
|
++triangleIndex;
|
|
}
|
|
}
|
|
|
|
#endif
|