mirror of
https://git.coom.tech/drummyfish/small3dlib.git
synced 2024-11-21 20:39:57 +01:00
468 lines
11 KiB
C
468 lines
11 KiB
C
/*
|
|
WIP simple realtime 3D rasterization-based library.
|
|
|
|
author: Miloslav Ciz
|
|
license: CC0 1.0
|
|
*/
|
|
|
|
#ifndef S3L_H
|
|
#define S3L_H
|
|
|
|
#include <stdint.h>
|
|
|
|
typedef int16_t S3L_Unit;
|
|
#define S3L_FRACTIONS_PER_UNIT 1024
|
|
typedef int16_t S3L_ScreenCoord;
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Unit x;
|
|
S3L_Unit y;
|
|
S3L_Unit z;
|
|
} S3L_Vec3;
|
|
|
|
typedef struct
|
|
{
|
|
S3L_ScreenCoord x; ///< Screen X coordinate.
|
|
S3L_ScreenCoord y; ///< Screen Y coordinate.
|
|
|
|
S3L_Unit barycentric0; /**< Barycentric coord A (corresponds to 1st vertex).
|
|
Together with B and C coords these serve to
|
|
locate the pixel on a triangle and interpolate
|
|
values between it's three points. The sum of the
|
|
three coordinates will always be exactly
|
|
S3L_FRACTIONS_PER_UNIT. */
|
|
S3L_Unit barycentric1; ///< Baryc. coord B (corresponds to 2nd vertex).
|
|
S3L_Unit barycentric2; ///< Baryc. coord C (corresponds to 3rd vertex).
|
|
} S3L_PixelInfo;
|
|
|
|
#define S3L_BACKFACE_CULLING_NONE 0
|
|
#define S3L_BACKFACE_CULLING_CW 1
|
|
#define S3L_BACKFACE_CULLING_CCW 2
|
|
|
|
#define S3L_MODE_TRIANGLES 0
|
|
#define S3L_MODE_LINES 1
|
|
#define S3L_MODE_POINTS 2
|
|
|
|
typedef struct
|
|
{
|
|
int backfaceCulling;
|
|
int mode;
|
|
} S3L_DrawConfig;
|
|
|
|
void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl
|
|
|
|
typedef struct
|
|
{
|
|
int16_t steps;
|
|
int16_t err;
|
|
S3L_ScreenCoord x;
|
|
S3L_ScreenCoord y;
|
|
|
|
int16_t *majorCoord;
|
|
int16_t *minorCoord;
|
|
int16_t majorIncrement;
|
|
int16_t minorIncrement;
|
|
int16_t majorDiff;
|
|
int16_t minorDiff;
|
|
} S3L_BresenhamState;
|
|
|
|
/**
|
|
Returns a value interpolated between the three triangle vertices based on
|
|
barycentric coordinates.
|
|
*/
|
|
|
|
static inline S3L_Unit S3L_interpolateBarycentric(
|
|
S3L_Unit value0, S3L_Unit value1, S3L_Unit value2,
|
|
S3L_Unit barycentric0, S3L_Unit barycentric1, S3L_Unit barycentric2)
|
|
{
|
|
return
|
|
(
|
|
(value0 * barycentric0) +
|
|
(value1 * barycentric1) +
|
|
(value2 * barycentric2)
|
|
) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
// general helper functions:
|
|
|
|
static inline int16_t S3L_abs(int16_t value)
|
|
{
|
|
return value >= 0 ? value : -1 * value;
|
|
}
|
|
|
|
static inline int16_t S3L_min(int16_t v1, int16_t v2)
|
|
{
|
|
return v1 >= v2 ? v2 : v1;
|
|
}
|
|
|
|
static inline int16_t S3L_max(int16_t v1, int16_t v2)
|
|
{
|
|
return v1 >= v2 ? v1 : v2;
|
|
}
|
|
|
|
static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod)
|
|
{
|
|
return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
|
|
}
|
|
|
|
static inline S3L_Unit S3L_nonZero(S3L_Unit value)
|
|
{
|
|
return value != 0 ? value : 1;
|
|
}
|
|
|
|
/**
|
|
Interpolated between two values, v1 and v2, in the same ratio as t is to
|
|
tMax. Does NOT prevent zero division.
|
|
*/
|
|
|
|
static inline int16_t S3L_interpolate(int16_t v1, int16_t v2, int16_t t,
|
|
int16_t tMax)
|
|
{
|
|
return v1 + ((v2 - v1) * t) / tMax;
|
|
}
|
|
|
|
/**
|
|
Same as S3L_interpolate but with v1 = 0. Should be faster.
|
|
*/
|
|
|
|
static inline int16_t S3L_interpolateFrom0(int16_t v2, int16_t t, int16_t tMax)
|
|
{
|
|
return (v2 * t) / tMax;
|
|
}
|
|
|
|
void S3L_bresenhamInit(S3L_BresenhamState *state, int16_t x0, int16_t y0,
|
|
int16_t x1, int16_t y1)
|
|
{
|
|
int16_t dx = x1 - x0;
|
|
int16_t dy = y1 - y0;
|
|
|
|
int16_t absDx = S3L_abs(dx);
|
|
int16_t absDy = S3L_abs(dy);
|
|
|
|
if (absDx >= absDy)
|
|
{
|
|
state->majorCoord = &(state->x);
|
|
state->minorCoord = &(state->y);
|
|
|
|
state->minorDiff = 2 * absDy;
|
|
state->majorDiff = 2 * absDx;
|
|
state->err = 2 * dy - dx;
|
|
|
|
state->majorIncrement = dx >= 0 ? 1 : -1;
|
|
state->minorIncrement = dy >= 0 ? 1 : -1;
|
|
|
|
state->steps = absDx;
|
|
}
|
|
else
|
|
{
|
|
state->majorCoord = &(state->y);
|
|
state->minorCoord = &(state->x);
|
|
|
|
state->minorDiff = 2 * absDx;
|
|
state->majorDiff = 2 * absDy;
|
|
state->err = 2 * dx - dy;
|
|
|
|
state->majorIncrement = dy >= 0 ? 1 : -1;
|
|
state->minorIncrement = dx >= 0 ? 1 : -1;
|
|
|
|
state->steps = absDy;
|
|
}
|
|
|
|
state->x = x0;
|
|
state->y = y0;
|
|
}
|
|
|
|
int S3L_bresenhamStep(S3L_BresenhamState *state)
|
|
{
|
|
state->steps--;
|
|
|
|
(*state->majorCoord) += state->majorIncrement;
|
|
|
|
if (state->err > 0)
|
|
{
|
|
(*state->minorCoord) += state->minorIncrement;
|
|
state->err -= state->majorDiff;
|
|
}
|
|
|
|
state->err += state->minorDiff;
|
|
|
|
return state->steps >= 0;
|
|
}
|
|
|
|
void S3L_drawTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
|
|
int16_t x2, int16_t y2, S3L_DrawConfig config)
|
|
{
|
|
if (config.backfaceCulling != S3L_BACKFACE_CULLING_NONE)
|
|
{
|
|
int cw = // matrix determinant
|
|
x0 * y1 + y0 * x2 + x1 * y2 - y1 * x2 - y0 * x1 - x0 * y2 > 0;
|
|
|
|
if ((config.backfaceCulling == S3L_BACKFACE_CULLING_CW && !cw) ||
|
|
(config.backfaceCulling == S3L_BACKFACE_CULLING_CCW && cw))
|
|
return;
|
|
}
|
|
|
|
S3L_PixelInfo p;
|
|
|
|
p.barycentric0 = 0;
|
|
p.barycentric1 = 0;
|
|
p.barycentric2 = 0;
|
|
|
|
// point mode
|
|
|
|
if (config.mode == S3L_MODE_POINTS)
|
|
{
|
|
p.x = x0; p.y = y0; p.barycentric0 = S3L_FRACTIONS_PER_UNIT;
|
|
p.barycentric1 = 0; p.barycentric2 = 0;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
|
|
p.x = x1; p.y = y1; p.barycentric0 = 0;
|
|
p.barycentric1 = S3L_FRACTIONS_PER_UNIT; p.barycentric2 = 0;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
|
|
p.x = x2; p.y = y2; p.barycentric0 = 0;
|
|
p.barycentric1 = 0; p.barycentric2 = S3L_FRACTIONS_PER_UNIT;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
|
|
return;
|
|
}
|
|
|
|
// line mode
|
|
|
|
if (config.mode == S3L_MODE_LINES)
|
|
{
|
|
S3L_BresenhamState line;
|
|
S3L_Unit lineLen;
|
|
|
|
#define drawLine(p1,p2)\
|
|
S3L_bresenhamInit(&line,x##p1,y##p1,x##p2,y##p2);\
|
|
p.barycentric0 = 0;\
|
|
p.barycentric1 = 0;\
|
|
p.barycentric2 = 0;\
|
|
lineLen = S3L_nonZero(line.steps);\
|
|
do\
|
|
{\
|
|
p.x = line.x; p.y = line.y;\
|
|
p.barycentric##p1 = S3L_interpolateFrom0(\
|
|
S3L_FRACTIONS_PER_UNIT,line.steps,lineLen); \
|
|
p.barycentric##p2 = S3L_FRACTIONS_PER_UNIT - p.barycentric##p1;\
|
|
S3L_PIXEL_FUNCTION(&p);\
|
|
} while (S3L_bresenhamStep(&line));
|
|
|
|
drawLine(0,1)
|
|
drawLine(2,0)
|
|
drawLine(1,2)
|
|
|
|
#undef drawLine
|
|
|
|
return;
|
|
}
|
|
|
|
// triangle mode
|
|
|
|
S3L_ScreenCoord
|
|
tPointX, tPointY, // top triangle point coords
|
|
lPointX, lPointY, // left triangle point coords
|
|
rPointX, rPointY; // right triangle point coords
|
|
|
|
S3L_Unit *barycentric0; // bar. coord that gets higher from L to R
|
|
S3L_Unit *barycentric1; // bar. coord that gets higher from R to L
|
|
S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up
|
|
|
|
// Sort the points.
|
|
|
|
#define handleLR(t,a,b)\
|
|
int16_t aDx = x##a - x##t;\
|
|
int16_t bDx = x##b - x##t;\
|
|
int16_t aDy = S3L_nonZero(y##a - y##t);\
|
|
int16_t bDy = S3L_nonZero(y##b - y##t);\
|
|
if ((aDx << 4) / aDy < (bDx << 4) / bDy)\
|
|
/*if (x##a <= x##b)*/\
|
|
{\
|
|
lPointX = x##a; lPointY = y##a;\
|
|
rPointX = x##b; rPointY = y##b;\
|
|
barycentric0 = &p.barycentric##b;\
|
|
barycentric1 = &p.barycentric##a;\
|
|
}\
|
|
else\
|
|
{\
|
|
lPointX = x##b; lPointY = y##b;\
|
|
rPointX = x##a; rPointY = y##a;\
|
|
barycentric0 = &p.barycentric##a;\
|
|
barycentric1 = &p.barycentric##b;\
|
|
}
|
|
|
|
if (y0 <= y1)
|
|
{
|
|
if (y0 <= y2)
|
|
{
|
|
tPointX = x0;
|
|
tPointY = y0;
|
|
barycentric2 = &p.barycentric0;
|
|
handleLR(0,1,2)
|
|
}
|
|
else
|
|
{
|
|
tPointX = x2;
|
|
tPointY = y2;
|
|
barycentric2 = &p.barycentric2;
|
|
handleLR(2,0,1)
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (y1 <= y2)
|
|
{
|
|
tPointX = x1;
|
|
tPointY = y1;
|
|
barycentric2 = &p.barycentric1;
|
|
handleLR(1,0,2)
|
|
}
|
|
else
|
|
{
|
|
tPointX = x2;
|
|
tPointY = y2;
|
|
barycentric2 = &p.barycentric2;
|
|
handleLR(2,0,1)
|
|
}
|
|
}
|
|
|
|
// Now draw the triangle line by line.
|
|
|
|
#undef handleLR
|
|
|
|
S3L_ScreenCoord splitY; // Y at which one side (L or R) changes
|
|
S3L_ScreenCoord endY; // bottom Y of the whole triangle
|
|
int splitOnLeft; // whether split happens on L or R
|
|
|
|
if (rPointY <= lPointY)
|
|
{
|
|
splitY = rPointY;
|
|
splitOnLeft = 0;
|
|
endY = lPointY;
|
|
}
|
|
else
|
|
{
|
|
splitY = lPointY;
|
|
splitOnLeft = 1;
|
|
endY = rPointY;
|
|
}
|
|
|
|
S3L_ScreenCoord currentY = tPointY;
|
|
|
|
/* We'll be using a slight modification of Bresenham line algorithm (a one
|
|
that draws a _non-continous_ line). */
|
|
|
|
int16_t
|
|
/* triangle side:
|
|
left right */
|
|
lX, rX, // current x position
|
|
lDx, rDx, // dx (end point - start point)
|
|
lDy, rDy, // dy (end point - start point)
|
|
lInc, rInc, // direction in which to increment (1 or -1)
|
|
lErr, rErr, // current error (Bresenham)
|
|
lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
|
|
lErrSub, rErrSub; // error value to substract when moving in x direction
|
|
|
|
S3L_Unit
|
|
lSideUnitStep, rSideUnitStep,
|
|
lSideUnitPos, rSideUnitPos;
|
|
|
|
int16_t helperDxAbs;
|
|
|
|
#define initSide(v,p1,p2, down)\
|
|
v##X = p1##PointX;\
|
|
v##Dx = p2##PointX - p1##PointX;\
|
|
v##Dy = p2##PointY - p1##PointY;\
|
|
v##SideUnitStep = S3L_FRACTIONS_PER_UNIT / (v##Dy != 0 ? v##Dy : 1);\
|
|
v##SideUnitPos = 0;\
|
|
if (!down)\
|
|
{\
|
|
v##SideUnitPos = S3L_FRACTIONS_PER_UNIT;\
|
|
v##SideUnitStep *= -1;\
|
|
}\
|
|
helperDxAbs = S3L_abs(v##Dx);\
|
|
v##Inc = v##Dx >= 0 ? 1 : -1;\
|
|
v##Err = 2 * helperDxAbs - v##Dy;\
|
|
v##ErrAdd = 2 * helperDxAbs;\
|
|
v##ErrSub = 2 * v##Dy;\
|
|
v##ErrSub = v##ErrSub != 0 ? v##ErrSub : 1; /* don't allow 0, could lead
|
|
to an infinite substracting
|
|
loop */
|
|
#define stepSide(s)\
|
|
while (s##Err > 0)\
|
|
{\
|
|
s##X += s##Inc;\
|
|
s##Err -= s##ErrSub;\
|
|
}\
|
|
s##Err += s##ErrAdd;
|
|
|
|
initSide(r,t,r,1)
|
|
initSide(l,t,l,1)
|
|
|
|
while (currentY <= endY)
|
|
{
|
|
if (currentY == splitY)
|
|
{
|
|
if (splitOnLeft)
|
|
{
|
|
initSide(l,l,r,0);
|
|
|
|
S3L_Unit *tmp = barycentric0;
|
|
barycentric0 = barycentric2;
|
|
barycentric2 = tmp;
|
|
|
|
rSideUnitPos = S3L_FRACTIONS_PER_UNIT - rSideUnitPos;
|
|
rSideUnitStep *= -1;
|
|
}
|
|
else
|
|
{
|
|
initSide(r,r,l,0);
|
|
|
|
S3L_Unit *tmp = barycentric1;
|
|
barycentric1 = barycentric2;
|
|
barycentric2 = tmp;
|
|
|
|
lSideUnitPos = S3L_FRACTIONS_PER_UNIT - lSideUnitPos;
|
|
lSideUnitStep *= -1;
|
|
}
|
|
}
|
|
|
|
p.y = currentY;
|
|
|
|
// draw the line
|
|
|
|
S3L_Unit tMax = rX - lX;
|
|
tMax = tMax != 0 ? tMax : 1; // prevent division by zero
|
|
|
|
S3L_Unit t1 = 0;
|
|
S3L_Unit t2 = tMax;
|
|
|
|
for (S3L_ScreenCoord x = lX; x <= rX; ++x)
|
|
{
|
|
*barycentric0 = S3L_interpolateFrom0(rSideUnitPos,t1,tMax);
|
|
*barycentric1 = S3L_interpolateFrom0(lSideUnitPos,t2,tMax);
|
|
*barycentric2 = S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1;
|
|
|
|
p.x = x;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
|
|
++t1;
|
|
--t2;
|
|
}
|
|
|
|
stepSide(r)
|
|
stepSide(l)
|
|
|
|
lSideUnitPos += lSideUnitStep;
|
|
rSideUnitPos += rSideUnitStep;
|
|
|
|
++currentY;
|
|
}
|
|
|
|
#undef initSide
|
|
#undef stepSide
|
|
}
|
|
|
|
#endif
|