1
0
Fork 0
mirror of https://git.coom.tech/drummyfish/small3dlib.git synced 2024-11-21 20:39:57 +01:00
small3dlib/programs/hqOffline.c
2019-06-19 18:06:56 +02:00

545 lines
15 KiB
C

/*
Example program for small3dlib. This is an offline (non-realtime) program
which creates an animation of a scene with more complex shaders. The
animation is output in image files (PPM format).
author: Miloslav Ciz
licene: CC0 1.0
*/
#define S3L_RESOLUTION_X 800
#define S3L_RESOLUTION_Y 600
#define S3L_PIXEL_FUNCTION drawPixel
#define S3L_PERSPECTIVE_CORRECTION 1
#define S3L_STRICT_NEAR_CULLING 0
#define S3L_SORT 0
#define S3L_Z_BUFFER 1
#include "../small3dlib.h"
#include <stdio.h>
#include <math.h>
#include "grassTexture.h"
#include "grassNormalTexture.h"
#include "sandTexture.h"
#include "sandNormalTexture.h"
#include "treeModel.h"
#include "treeTexture.h"
uint8_t frameBuffer[S3L_RESOLUTION_X * S3L_RESOLUTION_Y * 3];
int frame = 0;
#define GRID_W 16
#define GRID_H 16
int8_t heightMap[GRID_W * GRID_H] =
{
#define e -1
e,e,e,e,e,e,e,e,e,e,e,e,e,e,e,e,
e,0,0,0,0,1,0,0,1,1,1,0,0,0,0,e,
e,0,0,0,0,1,0,1,1,1,1,1,0,0,0,e,
e,0,0,1,1,1,1,3,2,1,1,1,1,0,0,e,
e,0,0,0,1,1,2,4,3,2,1,2,1,1,0,e,
e,0,1,2,2,2,2,4,4,2,2,2,2,1,0,e,
e,1,2,2,3,3,6,6,6,3,6,3,5,3,1,e,
e,0,2,2,3,7,8,7,7,6,6,6,6,6,2,e,
e,0,3,3,3,8,8,9,8,7,2,3,6,6,2,e,
e,0,0,2,3,4,7,7,7,6,1,1,4,3,0,e,
e,0,0,1,3,6,3,5,6,6,3,1,2,0,0,e,
e,0,0,0,3,3,3,6,6,6,6,1,0,0,0,e,
e,0,0,1,1,2,3,5,5,5,2,0,0,0,0,e,
e,0,1,2,0,0,2,4,4,2,2,0,0,0,0,e,
e,0,0,0,0,0,1,3,3,0,0,0,0,0,0,e,
e,e,e,e,e,e,e,e,e,e,e,e,e,e,e,e
#undef e
};
float interpolate(float a, float b, float t)
{
return a * (1.0 - t) + b * t;
}
// 0, 1, 2 left for trees
#define ISLAND_MODEL_INDEX 3
#define WATER_MODEL_INDEX 4 // must be last, for transparency
#define MODELS_TOTAL (WATER_MODEL_INDEX + 1)
#define GRID_TRIANGLES ((GRID_W - 1) * (GRID_H - 1) * 2)
S3L_Unit terrainVertices[GRID_W * GRID_H * 3];
S3L_Unit terrainNormals[GRID_W * GRID_H * 3];
S3L_Unit waterVertices[GRID_W * GRID_H * 3];
S3L_Unit waterNormals[GRID_W * GRID_H * 3];
S3L_Index gridTriangles[GRID_TRIANGLES * 3];
S3L_Unit treeNormals[TREE_VERTEX_COUNT * 3];
S3L_Model3D models[MODELS_TOTAL];
S3L_Scene scene;
int previousTriangle = -1;
S3L_Vec4 toLightDirection;
S3L_Vec4 n0, n1, n2, v0, v1, v2;
S3L_Unit uv0[2], uv1[2], uv2[2];
void sampleTexture(uint8_t *texture, int w, int h, float x, float y, uint8_t color[3])
{
// we do linear interpolation of the samples
x = fmod(x,1.0);
y = fmod(y,1.0);
if (x < 0)
x = 1.0 + x;
if (y < 0)
y = 1.0 + y;
x *= w;
y *= h;
int intX0 = x;
float xFract = x - intX0;
int intY0 = y;
float yFract = y - intY0;
int intX1 = (intX0 + 1) % w;
int intY1 = (intY0 + 1) % h;
int index;
int maxIndex = w * h * 3 - 1;
uint8_t c0[3], c1[3], c2[3], c3[3];
#define getColor(n,i0,i1)\
index = S3L_clamp((intY##i0 * w + intX##i1) * 3,0,maxIndex);\
c##n[0] = texture[index];\
c##n[1] = texture[index + 1];\
c##n[2] = texture[index + 2];\
getColor(0,0,0);
getColor(1,0,1);
getColor(2,1,0);
getColor(3,1,1);
#undef getColor
color[0] = interpolate(interpolate(c0[0],c1[0],xFract),interpolate(c2[0],c3[0],xFract),yFract);
color[1] = interpolate(interpolate(c0[1],c1[1],xFract),interpolate(c2[1],c3[1],xFract),yFract);
color[2] = interpolate(interpolate(c0[2],c1[2],xFract),interpolate(c2[2],c3[2],xFract),yFract);
}
void drawPixel(S3L_PixelInfo *p)
{
int16_t color[3];
float u, v;
float diffuseIntensity, specularIntensity, specularPower;
S3L_Unit *normals;
switch (p->modelIndex)
{
case 0:
case 1:
case 2:
normals = treeNormals; break;
case ISLAND_MODEL_INDEX:
normals = terrainNormals; break;
case WATER_MODEL_INDEX:
default:
normals = waterNormals; break;
}
if (p->triangleID != previousTriangle)
{
int index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3] * 3;
n0.x = normals[index];
v0.x = scene.models[p->modelIndex].vertices[index];
index++;
n0.y = normals[index];
v0.y = scene.models[p->modelIndex].vertices[index];
index++;
n0.z = normals[index];
v0.z = scene.models[p->modelIndex].vertices[index];
index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3 + 1] * 3;
n1.x = normals[index];
v1.x = scene.models[p->modelIndex].vertices[index];
index++;
n1.y = normals[index];
v1.y = scene.models[p->modelIndex].vertices[index];
index++;
n1.z = normals[index];
v1.z = scene.models[p->modelIndex].vertices[index];
index = scene.models[p->modelIndex].triangles[p->triangleIndex * 3 + 2] * 3;
n2.x = normals[index];
v2.x = scene.models[p->modelIndex].vertices[index];
index++;
n2.y = normals[index];
v2.y = scene.models[p->modelIndex].vertices[index];
index++;
n2.z = normals[index];
v2.z = scene.models[p->modelIndex].vertices[index];
if (p->modelIndex != WATER_MODEL_INDEX &&
p->modelIndex != ISLAND_MODEL_INDEX)
{
index = treeUVIndices[p->triangleIndex * 3] * 2;
uv0[0] = treeUVs[index];
index++;
uv0[1] = treeUVs[index];
index = treeUVIndices[p->triangleIndex * 3 + 1] * 2;
uv1[0] = treeUVs[index];
index++;
uv1[1] = treeUVs[index];
index = treeUVIndices[p->triangleIndex * 3 + 2] * 2;
uv2[0] = treeUVs[index];
index++;
uv2[1] = treeUVs[index];
}
previousTriangle = p->triangleID;
}
S3L_correctBarycentricCoords(p->barycentric);
S3L_Vec4 position;
S3L_Vec4 normal;
S3L_Vec4 toCameraDirection;
S3L_Vec4 reflected;
S3L_Unit blend = 0;
position.x = S3L_interpolateBarycentric(v0.x,v1.x,v2.x,p->barycentric);
position.y = S3L_interpolateBarycentric(v0.y,v1.y,v2.y,p->barycentric);
position.z = S3L_interpolateBarycentric(v0.z,v1.z,v2.z,p->barycentric);
normal.x = S3L_interpolateBarycentric(n0.x,n1.x,n2.x,p->barycentric);
normal.y = S3L_interpolateBarycentric(n0.y,n1.y,n2.y,p->barycentric);
normal.z = S3L_interpolateBarycentric(n0.z,n1.z,n2.z,p->barycentric);
toCameraDirection.x = scene.camera.transform.translation.x - position.x;
toCameraDirection.y = scene.camera.transform.translation.y - position.y;
toCameraDirection.z = scene.camera.transform.translation.z - position.z;
S3L_normalizeVec3(&toCameraDirection);
if (p->modelIndex == WATER_MODEL_INDEX)
{
diffuseIntensity = 0.6;
specularIntensity = 0.8;
specularPower = 40.0;
float dist, dx, dy;
// create wavy normal map for water
dist = position.x + position.z + frame * 5;
normal.x += S3L_sin(dist) / 8;
normal.z += S3L_cos(dist) / 8;
dist = position.x - 2 * position.z + frame * 10;
normal.x += S3L_sin(dist) / 16;
normal.z += S3L_cos(dist) / 16;
}
else if (p->modelIndex == ISLAND_MODEL_INDEX)
{
diffuseIntensity = 0.5;
specularIntensity = 0.7;
specularPower = 10.0;
u = position.x / ((float) S3L_FRACTIONS_PER_UNIT * 2);
v = position.z / ((float) S3L_FRACTIONS_PER_UNIT * 2);
uint8_t textureNormal[3];
uint8_t textureNormal2[3];
sampleTexture(sandNormalTexture,SANDNORMAL_TEXTURE_WIDTH,SANDNORMAL_TEXTURE_HEIGHT,u,v,textureNormal);
sampleTexture(grassNormalTexture,GRASSNORMAL_TEXTURE_WIDTH,GRASSNORMAL_TEXTURE_HEIGHT,u / 2,v / 2,textureNormal2);
blend = S3L_clamp(position.y * 4 - S3L_FRACTIONS_PER_UNIT,0,S3L_FRACTIONS_PER_UNIT);
textureNormal[0] = S3L_interpolateByUnit(textureNormal[0],textureNormal2[0],blend);
textureNormal[1] = S3L_interpolateByUnit(textureNormal[1],textureNormal2[1],blend);
textureNormal[2] = S3L_interpolateByUnit(textureNormal[2],textureNormal2[2],blend);
normal.x += (((int16_t) textureNormal[0]) - 128);
normal.z += (((int16_t) textureNormal[1]) - 128);
}
else // tree
{
diffuseIntensity = 0.6;
specularIntensity = 0.2;
specularPower = 20.0;
u = S3L_interpolateBarycentric(uv0[0],uv1[0],uv2[0],p->barycentric) / ((float) S3L_FRACTIONS_PER_UNIT);
v = S3L_interpolateBarycentric(uv0[1],uv1[1],uv2[1],p->barycentric) / ((float) S3L_FRACTIONS_PER_UNIT);
}
S3L_normalizeVec3(&normal);
S3L_reflect(toLightDirection,normal,&reflected);
float diffuse = 0.5 - (S3L_dotProductVec3(toLightDirection,normal) / ((float) S3L_FRACTIONS_PER_UNIT)) * 0.5;
float specular = 0.5 + (S3L_dotProductVec3(reflected,toCameraDirection) / ((float) S3L_FRACTIONS_PER_UNIT)) * 0.5;
float fog = (p->depth / ((float) S3L_FRACTIONS_PER_UNIT * 20));
if (fog > 1.0)
fog = 1.0;
float light = 0.9 * fog + diffuseIntensity * diffuse + specularIntensity * pow(specular,specularPower);
int index = (p->y * S3L_RESOLUTION_X + p->x) * 3;
if (p->modelIndex == WATER_MODEL_INDEX)
{
S3L_Unit waterDepth = (p->previousZ - p->depth) / 2;
float transparency = waterDepth / ((float) (S3L_FRACTIONS_PER_UNIT / 3));
transparency = transparency > 1.0 ? 1.0 : transparency;
if (transparency < 0.2)
transparency = transparency + 1.0 - transparency / 0.2;
uint8_t previousColor[3];
previousColor[0] = frameBuffer[index];
previousColor[1] = frameBuffer[index + 1];
previousColor[2] = frameBuffer[index + 2];
float fresnel = 0.5 + (S3L_dotProductVec3(toCameraDirection,normal) / ((float) S3L_FRACTIONS_PER_UNIT)) * 0.5;
color[0] = interpolate(150,0,fresnel);
color[1] = interpolate(230,10,fresnel);
color[2] = interpolate(255,100,fresnel);
color[0] = interpolate(previousColor[0],color[0] * light,transparency);
color[1] = interpolate(previousColor[1],color[1] * light,transparency);
color[2] = interpolate(previousColor[2],color[2] * light,transparency);
}
else if (p->modelIndex == ISLAND_MODEL_INDEX)
{
uint8_t textureColor[3];
uint8_t textureColor2[3];
sampleTexture(sandTexture,SAND_TEXTURE_WIDTH,SAND_TEXTURE_HEIGHT,u,v,textureColor);
sampleTexture(grassTexture,GRASS_TEXTURE_WIDTH,GRASS_TEXTURE_HEIGHT,u / 2,v / 2,textureColor2);
textureColor[0] = S3L_interpolateByUnit(textureColor[0],textureColor2[0],blend);
textureColor[1] = S3L_interpolateByUnit(textureColor[1],textureColor2[1],blend);
textureColor[2] = S3L_interpolateByUnit(textureColor[2],textureColor2[2],blend);
color[0] = textureColor[0] * light;
color[1] = textureColor[1] * light;
color[2] = textureColor[2] * light;
}
else // tree
{
uint8_t textureColor[3];
sampleTexture(treeTexture,TREE_TEXTURE_WIDTH,TREE_TEXTURE_HEIGHT,u,v,textureColor);
color[0] = textureColor[0] * light;
color[1] = textureColor[1] * light;
color[2] = textureColor[2] * light;
}
frameBuffer[index] = S3L_clamp(color[0],0,255);
frameBuffer[index + 1] = S3L_clamp(color[1],0,255);
frameBuffer[index + 2] = S3L_clamp(color[2],0,255);
}
void createGeometry()
{
int i = 0;
for (int y = 0; y < GRID_H; ++y)
for (int x = 0; x < GRID_W; ++x)
{
terrainVertices[i] = (x - GRID_W / 2) * S3L_FRACTIONS_PER_UNIT;
terrainVertices[i + 1] = (heightMap[i / 3] - 1) * S3L_FRACTIONS_PER_UNIT / 4;
terrainVertices[i + 2] = (y - GRID_H / 2) * S3L_FRACTIONS_PER_UNIT;
waterVertices[i] = terrainVertices[i];
waterVertices[i + 1] = 0;
waterVertices[i + 2] = terrainVertices[i + 2];
i += 3;
}
i = 0;
for (int y = 0; y < GRID_H - 1; ++y)
for (int x = 0; x < GRID_W - 1; ++x)
{
S3L_Index indices[4];
indices[0] = y * GRID_W + x;
indices[1] = indices[0] + 1;
indices[2] = indices[0] + GRID_W;
indices[3] = indices[2] + 1;
gridTriangles[i + 0] = indices[0];
gridTriangles[i + 1] = indices[1];
gridTriangles[i + 2] = indices[2];
gridTriangles[i + 3] = indices[2];
gridTriangles[i + 4] = indices[1];
gridTriangles[i + 5] = indices[3];
i += 6;
}
}
void animateWater()
{
for (int i = 1; i < GRID_W * GRID_H * 3; i += 3)
waterVertices[i] = S3L_FRACTIONS_PER_UNIT / 4 + sin(frame * 0.2) * S3L_FRACTIONS_PER_UNIT / 4;
S3L_computeModelNormals(models[WATER_MODEL_INDEX],waterNormals,0);
}
void clearFrameBuffer()
{
memset(frameBuffer,255,S3L_RESOLUTION_X * S3L_RESOLUTION_Y * 3 * sizeof(uint8_t));
}
void saveImage(char *fileName)
{
printf("saving image file: %s\n",fileName);
FILE *f = fopen(fileName,"w");
fprintf(f,"P3\n%d %d\n255\n",S3L_RESOLUTION_X,S3L_RESOLUTION_Y);
for (int i = 0; i < S3L_RESOLUTION_X * S3L_RESOLUTION_Y * 3; i += 3)
fprintf(f,"%d %d %d\n",frameBuffer[i],frameBuffer[i + 1],frameBuffer[i + 2]);
fclose(f);
}
int main()
{
createGeometry();
toLightDirection.x = 10;
toLightDirection.y = 10;
toLightDirection.z = 10;
toLightDirection.w = 0;
S3L_normalizeVec3(&toLightDirection);
treeModelInit();
models[0] = treeModel;
models[1] = treeModel;
models[2] = treeModel;
S3L_Unit scale = S3L_FRACTIONS_PER_UNIT / 4;
S3L_setTransform3D(0,1.2 * S3L_FRACTIONS_PER_UNIT,-1.5 * S3L_FRACTIONS_PER_UNIT,0,0,0,scale,scale,scale,&(models[0].transform));
S3L_setTransform3D(0.95 * S3L_FRACTIONS_PER_UNIT,1.3 * S3L_FRACTIONS_PER_UNIT,0,0,0,0,scale,scale * 1.3,scale,&(models[1].transform));
S3L_setTransform3D(-2 * S3L_FRACTIONS_PER_UNIT,0.8 * S3L_FRACTIONS_PER_UNIT,1.5 * S3L_FRACTIONS_PER_UNIT,0,0,0,scale,scale,scale,&(models[2].transform));
S3L_initModel3D(
terrainVertices,
GRID_W * GRID_H,
gridTriangles,
GRID_TRIANGLES,
&(models[ISLAND_MODEL_INDEX]));
S3L_computeModelNormals(models[ISLAND_MODEL_INDEX],terrainNormals,0);
S3L_computeModelNormals(treeModel,treeNormals,0);
S3L_initModel3D(
waterVertices,
GRID_W * GRID_H,
gridTriangles,
GRID_TRIANGLES,
&(models[WATER_MODEL_INDEX]));
S3L_initScene(models,MODELS_TOTAL,&scene);
char fileName[] = "test00.ppm";
S3L_Transform3D transform0, transform1;
S3L_Vec4 target0, target1;
S3L_initTransoform3D(&transform0);
S3L_initTransoform3D(&transform1);
target0 = scene.models[0].transform.translation;
target1 = scene.models[2].transform.translation;
transform0.translation.x = 2 * S3L_FRACTIONS_PER_UNIT;
transform0.translation.y = 4 * S3L_FRACTIONS_PER_UNIT;
transform0.translation.z = -14 * S3L_FRACTIONS_PER_UNIT;
S3L_lookAt(target0,&transform0);
transform1.translation.x = 5 * S3L_FRACTIONS_PER_UNIT;
transform1.translation.y = 6 * S3L_FRACTIONS_PER_UNIT;
transform1.translation.z = 3 * S3L_FRACTIONS_PER_UNIT;
transform1.rotation.x = S3L_FRACTIONS_PER_UNIT / 8;
S3L_lookAt(target1,&transform1);
//transform1.rotation.y = -S3L_FRACTIONS_PER_UNIT + transform1.rotation.y;
int frames = 100;
for (int i = 0; i < frames; ++i) // render the frames
{
animateWater();
float t = i / ((float) frames);
scene.camera.transform.translation.x = interpolate(transform0.translation.x,transform1.translation.x,t);
scene.camera.transform.translation.y = interpolate(transform0.translation.y,transform1.translation.y,t);
scene.camera.transform.translation.z = interpolate(transform0.translation.z,transform1.translation.z,t);
scene.camera.transform.rotation.x = interpolate(transform0.rotation.x,transform1.rotation.x,t);
scene.camera.transform.rotation.y = interpolate(transform0.rotation.y,transform1.rotation.y,t);
clearFrameBuffer();
S3L_newFrame();
S3L_drawScene(scene);
fileName[4] = '0' + (i / 10);
fileName[5] = '0' + (i % 10);
saveImage(fileName);
frame++;
}
return 0;
}