1
0
Fork 0
mirror of https://git.coom.tech/drummyfish/small3dlib.git synced 2024-11-21 20:39:57 +01:00
small3dlib/s3l.h
2018-11-21 17:10:38 +01:00

875 lines
24 KiB
C

/*
WIP
Simple realtime 3D software rasterization library. It is fast, focused on
resource-limited computers, located in a single C header file, with no
dependencies, using only integer arithmetic.
author: Miloslav Ciz
license: CC0 1.0
--------------------
CONVENTIONS:
Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs.
We use row vectors.
COORDINATE SYSTEMS:
In 3D space, a left-handed coord. system is used. One spatial unit is split
into S3L_FRACTIONS_PER_UNIT fractions.
y ^
| _
| /| z
| /
| /
[0,0,0]-------> x
Untransformed camera is placed at [0,0,0], looking forward along +z axis. The
projection plane is centered at [0,0,0], stretrinch from
-S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x),
vertical size (y) depends on the camera aspect ratio. Camera FOV is defined
by focal length.
y ^
| _
| /| z
____|_/__
| |/ |
-----[0,0,0]-|-----> x
|____|____|
|
|
Coordinates of pixels on screen start typically at the top left.
*/
#ifndef S3L_H
#define S3L_H
#include <stdint.h>
typedef int32_t S3L_Unit; /**< Units of measurement in 3D space. There is
S3L_FRACTIONS_PER_UNIT in one spatial unit.
By dividing the unit into fractions we
effectively achieve fixed point arithmetic.
The number of fractions is a constant that
serves as 1.0 in floating point arithmetic
(normalization etc.). */
#define S3L_FRACTIONS_PER_UNIT 512 /**< How many fractions a spatial unit is
split into. WARNING: if setting
higher than 1024, you'll probably
have to modify a sin table otherwise
it will overflow. Also other things
may overflow, so rather don't do it. */
#define S3L_SIN_TABLE_LENGTH 128
static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] =
{
/* 511 was chosen here as a highest number that doesn't overflow during
compilation for S3L_FRACTIONS_PER_UNIT == 1024 */
(0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
(12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
(25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
(37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
(50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
(62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
(74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
(87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
(99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
(111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
(124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
(136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
(148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
(160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
(172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
(183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
(195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
(207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
(218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
(229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
(240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
(251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
(262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
(273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
(283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
(294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
(304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
(314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
(324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
(333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
(343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
(352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
(361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
(370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
(378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
(386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
(395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
(402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
(410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
(417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
(424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
(431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
(438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
(444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
(450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
(456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
(461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
(467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
(472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
(476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
(481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
(485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
(488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
(492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
(495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
(498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
(501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
(503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
(505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
(507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
(508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
(509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
(510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
(510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
};
#define S3L_SIN_TABLE_UNIT_STEP\
(S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4))
typedef int16_t S3L_ScreenCoord;
typedef uint16_t S3L_Index;
/**
Vector that consists of four scalars and can represent homogenous
coordinates, but is generally also used as Vec3 and Vec2.
*/
typedef struct
{
S3L_Unit x;
S3L_Unit y;
S3L_Unit z;
S3L_Unit w;
} S3L_Vec4;
#define S3L_writeVec4(v)\
printf("Vec4: %d %d %d %d\n",(v.x),(v.y),(v.z),(v.w))
static inline void S3L_initVec4(S3L_Vec4 *v)
{
v->x = 0; v->y = 0; v->z = 0; v->w = S3L_FRACTIONS_PER_UNIT;
}
typedef S3L_Unit S3L_Mat4[4][4]; /**< 4x4 matrix, used mostly for 3D
transforms. The indexing is this:
matrix[column][row]. */
#define S3L_writeMat4(m)\
printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\
,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\
(m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\
(m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\
(m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3])
/**
Initializes a 4x4 matrix to identity.
*/
static inline void S3L_initMat4(S3L_Mat4 *m)
{
#define M(x,y) (*m)[x][y]
#define S S3L_FRACTIONS_PER_UNIT
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S;
#undef M
#undef S
}
/**
Multiplies a vector by a matrix with normalization by S3L_FRACTIONS_PER_UNIT.
Result is stored in the input vector.
*/
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
{
S3L_Vec4 vBackup;
vBackup.x = v->x;
vBackup.y = v->y;
vBackup.z = v->z;
vBackup.w = v->w;
// TODO: try alternative operation orders to optimize
#define dot(col)\
(vBackup.x * (*m)[col][0]) / S3L_FRACTIONS_PER_UNIT +\
(vBackup.y * (*m)[col][1]) / S3L_FRACTIONS_PER_UNIT +\
(vBackup.z * (*m)[col][2]) / S3L_FRACTIONS_PER_UNIT +\
(vBackup.w * (*m)[col][3]) / S3L_FRACTIONS_PER_UNIT
v->x = dot(0);
v->y = dot(1);
v->z = dot(2);
v->w = dot(3);
#undef dot
}
/**
Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT. Result
is stored in the first matrix.
*/
void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2)
{
S3L_Mat4 mat1;
for (uint16_t row = 0; row < 4; ++row)
for (uint16_t col = 0; col < 4; ++col)
mat1[col][row] = (*m1)[col][row];
for (uint16_t row = 0; row < 4; ++row)
for (uint16_t col = 0; col < 4; ++col)
{
(*m1)[col][row] = 0;
for (uint16_t i = 0; i < 4; ++i)
(*m1)[col][row] +=
(mat1[i][row] * (*m2)[col][i]) / S3L_FRACTIONS_PER_UNIT;
}
}
static inline void S3L_makeTranslationMat(S3L_Unit offsetX, S3L_Unit offsetY,
S3L_Unit offsetZ, S3L_Mat4 *m)
{
#define M(x,y) (*m)[x][y]
#define S S3L_FRACTIONS_PER_UNIT
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S;
#undef M
#undef S
}
typedef struct
{
S3L_Vec4 translation;
S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order:
1. z = around z (roll) CW looking along z+
2. x = around x (pitch) CW looking along x+
3. y = around y (yaw) CW looking along y+ */
S3L_Vec4 scale;
} S3L_Transform3D;
static inline void S3L_initTransoform3D(S3L_Transform3D *t)
{
S3L_initVec4(&(t->translation));
S3L_initVec4(&(t->rotation));
t->scale.x = S3L_FRACTIONS_PER_UNIT;
t->scale.y = S3L_FRACTIONS_PER_UNIT;
t->scale.z = S3L_FRACTIONS_PER_UNIT;
}
typedef struct
{
uint16_t resolutionX;
uint16_t resolutionY;
S3L_Unit focalLength; ///< Defines the field of view (FOV).
S3L_Transform3D transform;
} S3L_Camera;
static inline void S3L_initCamera(S3L_Camera *c)
{
c->resolutionX = 128;
c->resolutionY = 64;
c->focalLength = S3L_FRACTIONS_PER_UNIT;
S3L_initTransoform3D(&(c->transform));
}
typedef struct
{
S3L_ScreenCoord x; ///< Screen X coordinate.
S3L_ScreenCoord y; ///< Screen Y coordinate.
S3L_Unit barycentric0; /**< Barycentric coord 0 (corresponds to 1st vertex).
Together with 1 and 2 coords these serve to
locate the pixel on a triangle and interpolate
values between it's three points. The sum of the
three coordinates will always be exactly
S3L_FRACTIONS_PER_UNIT. */
S3L_Unit barycentric1; ///< Baryc. coord 1 (corresponds to 2nd vertex).
S3L_Unit barycentric2; ///< Baryc. coord 2 (corresponds to 3rd vertex).
S3L_Index triangleID;
} S3L_PixelInfo;
static inline void S3L_initPixelInfo(S3L_PixelInfo *p)
{
p->x = 0;
p->y = 0;
p->barycentric0 = S3L_FRACTIONS_PER_UNIT;
p->barycentric1 = 0;
p->barycentric2 = 0;
p->triangleID = 0;
}
#define S3L_BACKFACE_CULLING_NONE 0
#define S3L_BACKFACE_CULLING_CW 1
#define S3L_BACKFACE_CULLING_CCW 2
#define S3L_MODE_TRIANGLES 0
#define S3L_MODE_LINES 1
#define S3L_MODE_POINTS 2
typedef struct
{
int backfaceCulling;
int mode;
} S3L_DrawConfig;
void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl
typedef struct
{
int16_t steps;
int16_t err;
S3L_ScreenCoord x;
S3L_ScreenCoord y;
int16_t *majorCoord;
int16_t *minorCoord;
int16_t majorIncrement;
int16_t minorIncrement;
int16_t majorDiff;
int16_t minorDiff;
} S3L_BresenhamState; ///< State of drawing a line with Bresenham algorithm.
/**
Returns a value interpolated between the three triangle vertices based on
barycentric coordinates.
*/
static inline S3L_Unit S3L_interpolateBarycentric(
S3L_Unit value0, S3L_Unit value1, S3L_Unit value2,
S3L_Unit barycentric0, S3L_Unit barycentric1, S3L_Unit barycentric2)
{
return
(
(value0 * barycentric0) +
(value1 * barycentric1) +
(value2 * barycentric2)
) / S3L_FRACTIONS_PER_UNIT;
}
// general helper functions
static inline int16_t S3L_abs(int16_t value)
{
return value >= 0 ? value : -1 * value;
}
static inline int16_t S3L_min(int16_t v1, int16_t v2)
{
return v1 >= v2 ? v2 : v1;
}
static inline int16_t S3L_max(int16_t v1, int16_t v2)
{
return v1 >= v2 ? v1 : v2;
}
static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod)
{
return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
}
static inline S3L_Unit S3L_nonZero(S3L_Unit value)
{
return value != 0 ? value : 1;
}
static inline S3L_Unit S3L_sin(S3L_Unit x)
{
x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4);
int8_t positive = 1;
if (x < S3L_SIN_TABLE_LENGTH)
x = x;
else if (x < S3L_SIN_TABLE_LENGTH * 2)
x = S3L_SIN_TABLE_LENGTH * 2 - x - 1;
else if (x < S3L_SIN_TABLE_LENGTH * 3)
{
x = x - S3L_SIN_TABLE_LENGTH * 2;
positive = 0;
}
else
{
x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1;
positive = 0;
}
return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x];
}
static inline S3L_Unit S3L_cos(S3L_Unit x)
{
return S3L_sin(x - S3L_FRACTIONS_PER_UNIT / 4);
}
/**
Interpolated between two values, v1 and v2, in the same ratio as t is to
tMax. Does NOT prevent zero division.
*/
static inline int16_t S3L_interpolate(int16_t v1, int16_t v2, int16_t t,
int16_t tMax)
{
return v1 + ((v2 - v1) * t) / tMax;
}
/**
Same as S3L_interpolate but with v1 = 0. Should be faster.
*/
static inline int16_t S3L_interpolateFrom0(int16_t v2, int16_t t, int16_t tMax)
{
return (v2 * t) / tMax;
}
void S3L_bresenhamInit(S3L_BresenhamState *state, int16_t x0, int16_t y0,
int16_t x1, int16_t y1)
{
int16_t dx = x1 - x0;
int16_t dy = y1 - y0;
int16_t absDx = S3L_abs(dx);
int16_t absDy = S3L_abs(dy);
if (absDx >= absDy)
{
state->majorCoord = &(state->x);
state->minorCoord = &(state->y);
state->minorDiff = 2 * absDy;
state->majorDiff = 2 * absDx;
state->err = 2 * dy - dx;
state->majorIncrement = dx >= 0 ? 1 : -1;
state->minorIncrement = dy >= 0 ? 1 : -1;
state->steps = absDx;
}
else
{
state->majorCoord = &(state->y);
state->minorCoord = &(state->x);
state->minorDiff = 2 * absDx;
state->majorDiff = 2 * absDy;
state->err = 2 * dx - dy;
state->majorIncrement = dy >= 0 ? 1 : -1;
state->minorIncrement = dx >= 0 ? 1 : -1;
state->steps = absDy;
}
state->x = x0;
state->y = y0;
}
int S3L_bresenhamStep(S3L_BresenhamState *state)
{
state->steps--;
(*state->majorCoord) += state->majorIncrement;
if (state->err > 0)
{
(*state->minorCoord) += state->minorIncrement;
state->err -= state->majorDiff;
}
state->err += state->minorDiff;
return state->steps >= 0;
}
void S3L_drawTriangle(
S3L_ScreenCoord x0, S3L_ScreenCoord y0,
S3L_ScreenCoord x1, S3L_ScreenCoord y1,
S3L_ScreenCoord x2, S3L_ScreenCoord y2,
S3L_DrawConfig config,
S3L_Index triangleID)
{
if (config.backfaceCulling != S3L_BACKFACE_CULLING_NONE)
{
int cw = // matrix determinant
x0 * y1 + y0 * x2 + x1 * y2 - y1 * x2 - y0 * x1 - x0 * y2 > 0;
if ((config.backfaceCulling == S3L_BACKFACE_CULLING_CW && !cw) ||
(config.backfaceCulling == S3L_BACKFACE_CULLING_CCW && cw))
return;
}
S3L_PixelInfo p;
S3L_initPixelInfo(&p);
p.triangleID = triangleID;
// point mode
if (config.mode == S3L_MODE_POINTS)
{
p.x = x0; p.y = y0; p.barycentric0 = S3L_FRACTIONS_PER_UNIT;
p.barycentric1 = 0; p.barycentric2 = 0;
S3L_PIXEL_FUNCTION(&p);
p.x = x1; p.y = y1; p.barycentric0 = 0;
p.barycentric1 = S3L_FRACTIONS_PER_UNIT; p.barycentric2 = 0;
S3L_PIXEL_FUNCTION(&p);
p.x = x2; p.y = y2; p.barycentric0 = 0;
p.barycentric1 = 0; p.barycentric2 = S3L_FRACTIONS_PER_UNIT;
S3L_PIXEL_FUNCTION(&p);
return;
}
// line mode
if (config.mode == S3L_MODE_LINES)
{
S3L_BresenhamState line;
S3L_Unit lineLen;
#define drawLine(p1,p2)\
S3L_bresenhamInit(&line,x##p1,y##p1,x##p2,y##p2);\
p.barycentric0 = 0;\
p.barycentric1 = 0;\
p.barycentric2 = 0;\
lineLen = S3L_nonZero(line.steps);\
do\
{\
p.x = line.x; p.y = line.y;\
p.barycentric##p1 = S3L_interpolateFrom0(\
S3L_FRACTIONS_PER_UNIT,line.steps,lineLen); \
p.barycentric##p2 = S3L_FRACTIONS_PER_UNIT - p.barycentric##p1;\
S3L_PIXEL_FUNCTION(&p);\
} while (S3L_bresenhamStep(&line));
drawLine(0,1)
drawLine(2,0)
drawLine(1,2)
#undef drawLine
return;
}
// triangle mode
S3L_ScreenCoord
tPointX, tPointY, // top triangle point coords
lPointX, lPointY, // left triangle point coords
rPointX, rPointY; // right triangle point coords
S3L_Unit *barycentric0; // bar. coord that gets higher from L to R
S3L_Unit *barycentric1; // bar. coord that gets higher from R to L
S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up
// Sort the points.
#define handleLR(t,a,b)\
int16_t aDx = x##a - x##t;\
int16_t bDx = x##b - x##t;\
int16_t aDy = S3L_nonZero(y##a - y##t);\
int16_t bDy = S3L_nonZero(y##b - y##t);\
if ((aDx << 4) / aDy < (bDx << 4) / bDy)\
/*if (x##a <= x##b)*/\
{\
lPointX = x##a; lPointY = y##a;\
rPointX = x##b; rPointY = y##b;\
barycentric0 = &p.barycentric##b;\
barycentric1 = &p.barycentric##a;\
}\
else\
{\
lPointX = x##b; lPointY = y##b;\
rPointX = x##a; rPointY = y##a;\
barycentric0 = &p.barycentric##a;\
barycentric1 = &p.barycentric##b;\
}
if (y0 <= y1)
{
if (y0 <= y2)
{
tPointX = x0;
tPointY = y0;
barycentric2 = &p.barycentric0;
handleLR(0,1,2)
}
else
{
tPointX = x2;
tPointY = y2;
barycentric2 = &p.barycentric2;
handleLR(2,0,1)
}
}
else
{
if (y1 <= y2)
{
tPointX = x1;
tPointY = y1;
barycentric2 = &p.barycentric1;
handleLR(1,0,2)
}
else
{
tPointX = x2;
tPointY = y2;
barycentric2 = &p.barycentric2;
handleLR(2,0,1)
}
}
// Now draw the triangle line by line.
#undef handleLR
S3L_ScreenCoord splitY; // Y at which one side (L or R) changes
S3L_ScreenCoord endY; // bottom Y of the whole triangle
int splitOnLeft; // whether split happens on L or R
if (rPointY <= lPointY)
{
splitY = rPointY;
splitOnLeft = 0;
endY = lPointY;
}
else
{
splitY = lPointY;
splitOnLeft = 1;
endY = rPointY;
}
S3L_ScreenCoord currentY = tPointY;
/* We'll be using a slight modification of Bresenham line algorithm (a one
that draws a _non-continous_ line). */
int16_t
/* triangle side:
left right */
lX, rX, // current x position
lDx, rDx, // dx (end point - start point)
lDy, rDy, // dy (end point - start point)
lInc, rInc, // direction in which to increment (1 or -1)
lErr, rErr, // current error (Bresenham)
lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
lErrSub, rErrSub; // error value to substract when moving in x direction
S3L_Unit
lSideUnitStep, rSideUnitStep,
lSideUnitPos, rSideUnitPos;
int16_t helperDxAbs;
#define initSide(v,p1,p2, down)\
v##X = p1##PointX;\
v##Dx = p2##PointX - p1##PointX;\
v##Dy = p2##PointY - p1##PointY;\
v##SideUnitStep = S3L_FRACTIONS_PER_UNIT / (v##Dy != 0 ? v##Dy : 1);\
v##SideUnitPos = 0;\
if (!down)\
{\
v##SideUnitPos = S3L_FRACTIONS_PER_UNIT;\
v##SideUnitStep *= -1;\
}\
helperDxAbs = S3L_abs(v##Dx);\
v##Inc = v##Dx >= 0 ? 1 : -1;\
v##Err = 2 * helperDxAbs - v##Dy;\
v##ErrAdd = 2 * helperDxAbs;\
v##ErrSub = 2 * v##Dy;\
v##ErrSub = v##ErrSub != 0 ? v##ErrSub : 1; /* don't allow 0, could lead
to an infinite substracting
loop */
#define stepSide(s)\
while (s##Err > 0)\
{\
s##X += s##Inc;\
s##Err -= s##ErrSub;\
}\
s##Err += s##ErrAdd;
initSide(r,t,r,1)
initSide(l,t,l,1)
while (currentY <= endY)
{
if (currentY == splitY)
{
if (splitOnLeft)
{
initSide(l,l,r,0);
S3L_Unit *tmp = barycentric0;
barycentric0 = barycentric2;
barycentric2 = tmp;
rSideUnitPos = S3L_FRACTIONS_PER_UNIT - rSideUnitPos;
rSideUnitStep *= -1;
}
else
{
initSide(r,r,l,0);
S3L_Unit *tmp = barycentric1;
barycentric1 = barycentric2;
barycentric2 = tmp;
lSideUnitPos = S3L_FRACTIONS_PER_UNIT - lSideUnitPos;
lSideUnitStep *= -1;
}
}
p.y = currentY;
// draw the line
S3L_Unit tMax = rX - lX;
tMax = tMax != 0 ? tMax : 1; // prevent division by zero
S3L_Unit t1 = 0;
S3L_Unit t2 = tMax;
for (S3L_ScreenCoord x = lX; x <= rX; ++x)
{
*barycentric0 = S3L_interpolateFrom0(rSideUnitPos,t1,tMax);
*barycentric1 = S3L_interpolateFrom0(lSideUnitPos,t2,tMax);
*barycentric2 = S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1;
p.x = x;
S3L_PIXEL_FUNCTION(&p);
++t1;
--t2;
}
stepSide(r)
stepSide(l)
lSideUnitPos += lSideUnitStep;
rSideUnitPos += rSideUnitStep;
++currentY;
}
#undef initSide
#undef stepSide
}
static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle)
{
if (angle < S3L_SIN_TABLE_UNIT_STEP)
return; // no visible rotation
S3L_Unit angleSin = S3L_sin(angle);
S3L_Unit angleCos = S3L_cos(angle);
S3L_Unit xBackup = *x;
*x =
(angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT -
(angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT;
*y =
(angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT +
(angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT;
}
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m)
{
S3L_makeTranslationMat(
worldTransform.translation.x,
worldTransform.translation.y,
worldTransform.translation.z,
m);
}
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m)
{
S3L_makeTranslationMat(
-1 * cameraTransform.translation.x,
-1 * cameraTransform.translation.y,
-1 * cameraTransform.translation.z,
m);
}
static inline void S3L_mapCameraToScreen(S3L_Vec4 point, S3L_Camera *camera,
S3L_ScreenCoord *screenX, S3L_ScreenCoord *screenY)
{
uint16_t halfW = camera->resolutionX >> 1; // TODO: precompute earlier?
uint16_t halfH = camera->resolutionY >> 1;
*screenX = halfW + (point.x * halfW) / point.z;
*screenY = halfH - (point.y * halfW) / point.z;
// ^ S3L_FRACTIONS_PER_UNIT cancel out
}
void S3L_drawModel(
const S3L_Unit coords[],
const S3L_Index triangleVertexIndices[],
uint16_t triangleCount,
S3L_Transform3D modelTransform,
S3L_Camera camera,
S3L_DrawConfig config)
{
S3L_Index triangleIndex = 0;
S3L_Index coordIndex = 0;
S3L_ScreenCoord sX0, sY0, sX1, sY1, sX2, sY2;
S3L_Vec4 pointModel;
S3L_Unit indexIndex;
pointModel.w = S3L_FRACTIONS_PER_UNIT; // has to be "1.0" for translation
S3L_Mat4 mat1, mat2;
S3L_makeWorldMatrix(modelTransform,&mat1);
S3L_makeCameraMatrix(camera.transform,&mat2);
S3L_mat4Xmat4(&mat1,&mat2);
while (triangleIndex < triangleCount)
{
#define mapCoords(n)\
indexIndex = triangleVertexIndices[coordIndex] * 3;\
pointModel.x = coords[indexIndex];\
++indexIndex; /* TODO: put into square brackets? */\
pointModel.y = coords[indexIndex];\
++indexIndex;\
pointModel.z = coords[indexIndex];\
++coordIndex;\
S3L_vec4Xmat4(&pointModel,&mat1);\
S3L_mapCameraToScreen(pointModel,&camera,&sX##n,&sY##n);
mapCoords(0)
mapCoords(1)
mapCoords(2)
S3L_drawTriangle(sX0,sY0,sX1,sY1,sX2,sY2,config,triangleIndex);
++triangleIndex;
}
}
#endif