mirror of
https://git.coom.tech/drummyfish/small3dlib.git
synced 2024-11-21 20:39:57 +01:00
2016 lines
60 KiB
C
2016 lines
60 KiB
C
#ifndef S3L_H
|
|
#define S3L_H
|
|
|
|
/*
|
|
WIP
|
|
|
|
Simple realtime 3D software rasterization renderer. It is fast, focused on
|
|
resource-limited computers, located in a single C header file, with no
|
|
dependencies, using only integer arithmetics.
|
|
|
|
author: Miloslav Ciz
|
|
license: CC0 1.0 + additional waiver of all IP
|
|
|
|
--------------------
|
|
|
|
This work's goal is to never be encumbered by any exclusive intellectual
|
|
property rights. The work is therefore provided under CC0 1.0 + additional
|
|
WAIVER OF ALL INTELLECTUAL PROPERTY RIGHTS that waives the rest of
|
|
intellectual property rights not already waived by CC0 1.0. The WAIVER OF ALL
|
|
INTELLECTUAL PROPERTY RGHTS is as follows:
|
|
|
|
Each contributor to this work agrees that they waive any exclusive rights,
|
|
including but not limited to copyright, patents, trademark, trade dress,
|
|
industrial design, plant varieties and trade secrets, to any and all ideas,
|
|
concepts, processes, discoveries, improvements and inventions conceived,
|
|
discovered, made, designed, researched or developed by the contributor either
|
|
solely or jointly with others, which relate to this work or result from this
|
|
work. Should any waiver of such right be judged legally invalid or
|
|
ineffective under applicable law, the contributor hereby grants to each
|
|
affected person a royalty-free, non transferable, non sublicensable, non
|
|
exclusive, irrevocable and unconditional license to this right.
|
|
|
|
--------------------
|
|
|
|
CONVENTIONS:
|
|
|
|
This library should never draw pixels outside the specified screen
|
|
coordinates, so you don't have to check this!
|
|
|
|
Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs.
|
|
|
|
We use row vectors.
|
|
|
|
In 3D space, a left-handed coord. system is used. One spatial unit is split
|
|
into S3L_FRACTIONS_PER_UNIT fractions (fixed point arithmetic).
|
|
|
|
y ^
|
|
| _
|
|
| /| z
|
|
| /
|
|
| /
|
|
[0,0,0]-------> x
|
|
|
|
Untransformed camera is placed at [0,0,0], looking forward along +z axis. The
|
|
projection plane is centered at [0,0,0], stretrinch from
|
|
-S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x),
|
|
vertical size (y) depends on the camera aspect ratio. Camera FOV is defined
|
|
by focal length.
|
|
|
|
y ^
|
|
| _
|
|
| /| z
|
|
____|_/__
|
|
| |/ |
|
|
-----[0,0,0]-|-----> x
|
|
|____|____|
|
|
|
|
|
|
|
|
|
|
Rotations use Euler angles and are generally in the extinsic Euler angles in
|
|
ZXY order (by Z, then by X, then by Y).
|
|
|
|
Coordinates of pixels on screen start typically at the top left, from [0,0].
|
|
|
|
There is NO subpixel accuracy (screen coordinates are only integer).
|
|
|
|
Triangle rasterization rules are these (mostly same as OpenGL, D3D etc.):
|
|
|
|
- Let's define:
|
|
- left side:
|
|
- not exactly horizontal, and on the left side of triangle
|
|
- exactly horizontal and above the topmost
|
|
(in other words: its normal points at least a little to the left or
|
|
completely up)
|
|
- right side: not left side
|
|
- Pixel centers are at integer coordinates and triangle for drawing are
|
|
specified with integer coordinates of pixel centers.
|
|
- A pixel is rasterized:
|
|
- if its center is inside the triangle OR
|
|
- if its center is exactly on the triangle side which is left and at the
|
|
same time is not on the side that's right (case of a triangle that's on
|
|
a single line) OR
|
|
- if its center is exactly on the triangle corner of sides neither of which
|
|
is right.
|
|
|
|
These rules imply among others:
|
|
|
|
- Adjacent triangles don't have any overlapping pixels, nor gaps between.
|
|
- Triangles of points that lie on a single line are NOT rasterized.
|
|
- A single "long" triangle CAN be rasterized as non-continuous.
|
|
- Transforming (e.g. mirroring, rotating by 90 degrees etc.) a result of
|
|
rasterizing triangle A is NOT generally equal to applying the same
|
|
transformation to triangle A first and then rasterizing it. Even the number
|
|
of rasterized pixels is usually different.
|
|
- If specifying a triangle with integer coordinates, then:
|
|
- The bottom-most corner (or side) of a triangle is never rasterized
|
|
(because it is connected to a right side).
|
|
- The top-most corner can only be rasterized on completely horizontal side
|
|
(otherwise it is connected to a right side).
|
|
- Vertically middle corner is rasterized if and only if it is on the left
|
|
of the triangle and at the same time is also not the bottom-most corner.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#ifndef S3L_RESOLUTION_X
|
|
#define S3L_RESOLUTION_X 640 ///< Redefine to your screen x resolution.
|
|
#endif
|
|
|
|
#ifndef S3L_RESOLUTION_Y
|
|
#define S3L_RESOLUTION_Y 480 ///< Redefine to your screen y resolution.
|
|
#endif
|
|
|
|
#ifndef S3L_COMPUTE_DEPTH
|
|
#define S3L_COMPUTE_DEPTH 0 /**< Whether to compute depth for each pixel
|
|
(fragment). Some other options may turn this
|
|
on. */
|
|
#endif
|
|
|
|
#ifndef S3L_PERSPECTIVE_CORRECTION
|
|
#define S3L_PERSPECTIVE_CORRECTION 0 /**< Specifies what type of perspective
|
|
correction (PC) to use. Remember
|
|
this is an expensive operation!
|
|
Possible values:
|
|
|
|
0: no PC, fastest but ugliest
|
|
1: full (per-pixel) PC, nicest but
|
|
extremely expensive!
|
|
2: triangle subdivided PC, a
|
|
compromise between quality and
|
|
speed (TODO, not implemented)
|
|
*/
|
|
#endif
|
|
|
|
typedef int32_t S3L_Unit; /**< Units of measurement in 3D space. There is
|
|
S3L_FRACTIONS_PER_UNIT in one spatial unit.
|
|
By dividing the unit into fractions we
|
|
effectively achieve fixed point arithmetic.
|
|
The number of fractions is a constant that
|
|
serves as 1.0 in floating point arithmetic
|
|
(normalization etc.). */
|
|
#define S3L_FRACTIONS_PER_UNIT 512 /**< How many fractions a spatial unit is
|
|
split into. WARNING: if setting
|
|
higher than 1024, you'll probably
|
|
have to modify a sin table otherwise
|
|
it will overflow. Also other things
|
|
may overflow, so rather don't do it. */
|
|
typedef int16_t S3L_ScreenCoord;
|
|
typedef uint16_t S3L_Index;
|
|
|
|
#define S3L_Z_BUFFER_NONE 0 /**< Don't use z-buffer. This saves a lot of
|
|
memory, but visibility checking won't be
|
|
pixel-accurate and has to mostly be done by
|
|
other means (typically sorting). */
|
|
#define S3L_Z_BUFFER_FULL 1 /**< Use full z-buffer (of S3L_Units) for
|
|
visibiltiy determination. This is the most
|
|
accurate option (and also a fast one), but
|
|
requires a big amount of memory. */
|
|
#define S3L_Z_BUFFER_BYTE 2 /**< Use reduced-size z-buffer (of bytes). This is
|
|
fast and somewhat accurate, but inaccuracies
|
|
can occur and a considerable amount of memory
|
|
is needed. */
|
|
|
|
#ifndef S3L_Z_BUFFER
|
|
#define S3L_Z_BUFFER S3L_Z_BUFFER_NONE /**< What type of z-buffer (depth
|
|
buffer) to use for visibility
|
|
determination. See
|
|
S3L_Z_BUFFER_*. */
|
|
#endif
|
|
|
|
#ifndef S3L_STENCIL_BUFFER
|
|
#define S3L_STENCIL_BUFFER 0 /**< Whether to use stencil buffer for drawing --
|
|
with this pixels that have already been
|
|
rasterized will be discarded. This is mostly
|
|
for front-to-back sorted drawing. */
|
|
#endif
|
|
|
|
#define S3L_SORT_NONE 0 /**< Don't sort triangles. This is fastest. */
|
|
#define S3L_SORT_BACK_TO_FRONT 1 /**< Sort triangles from back to front. This
|
|
can in most cases solve visibility
|
|
without requiring almost any extra
|
|
memory compared to z-buffer. */
|
|
#define S3L_SORT_FRONT_TO_BACK 2 /**< Sort triangles from front to back. This
|
|
can be faster than back to front, because
|
|
we prevent computing pixels that will be
|
|
overwritten by nearer ones, but we need
|
|
a 1b stencil buffer for this (enable
|
|
S3L_STENCIL_BUFFER), so a bit more memory
|
|
is needed. */
|
|
#ifndef S3L_SORT
|
|
#define S3L_SORT S3L_SORT_NONE /**< Defines how to sort triangles before
|
|
drawing a frame. This can be used to solve
|
|
visibility in case z-buffer is not used, to
|
|
prevent overwrting already rasterized
|
|
pixels, implement transparency etc. Note
|
|
that for simplicity and performance a
|
|
relatively simple sorting is used which
|
|
doesn't work completely correctly, so
|
|
mistakes can occur (even the best sorting
|
|
wouldn't be able to solve e.g. intersecting
|
|
triangles). */
|
|
#endif
|
|
|
|
#ifndef S3L_MAX_TRIANGES_DRAWN
|
|
#define S3L_MAX_TRIANGES_DRAWN 128 /**< Maximum number of triangles that can
|
|
be drawn in sorted modes. This
|
|
affects the size of a cache used for
|
|
triangle sorting. */
|
|
#endif
|
|
|
|
#ifndef S3L_NEAR
|
|
#define S3L_NEAR (S3L_FRACTIONS_PER_UNIT / 4) /**< Distance of the near
|
|
clipping plane. */
|
|
#endif
|
|
|
|
#ifndef S3L_FAST_LERP_QUALITY
|
|
#define S3L_FAST_LERP_QUALITY 8 /**< Quality (scaling) of SOME linear
|
|
interpolations. 0 will most likely be
|
|
faster, but artifacts can occur for
|
|
bigger tris, while higher values can fix
|
|
this -- in theory all higher values will
|
|
have the same speed (it is a shift
|
|
value), but it mustn't be too high to
|
|
prevent overflow. */
|
|
#endif
|
|
|
|
#define S3L_HALF_RESOLUTION_X (S3L_RESOLUTION_X >> 1)
|
|
#define S3L_HALF_RESOLUTION_Y (S3L_RESOLUTION_Y >> 1)
|
|
|
|
#define S3L_PROJECTION_PLANE_HEIGHT\
|
|
((S3L_RESOLUTION_Y * S3L_FRACTIONS_PER_UNIT * 2) / S3L_RESOLUTION_X)
|
|
|
|
/** Predefined vertices of a cube to simply insert in an array. These come with
|
|
S3L_CUBE_TRIANGLES and S3L_CUBE_TEXCOORDS. */
|
|
#define S3L_CUBE_VERTICES\
|
|
/* 0 front, bottom, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 1 front, bottom, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 2 front, top, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 3 front, top, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 4 back, bottom, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 5 back, bottom, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 6 back, top, right */\
|
|
S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,\
|
|
/* 7 back, top, left */\
|
|
-S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2,S3L_FRACTIONS_PER_UNIT/2
|
|
|
|
#define S3L_CUBE_VERTEX_COUNT 8
|
|
|
|
/** Predefined triangle indices of a cube, to be used with S3L_CUBE_VERTICES
|
|
and S3L_CUBE_TEXCOORDS. */
|
|
#define S3L_CUBE_TRIANGLES\
|
|
0, 3, 2, /* front */\
|
|
0, 1, 3,\
|
|
4, 0, 2, /* right */\
|
|
4, 2, 6,\
|
|
5, 4, 6, /* back */\
|
|
6, 7, 5,\
|
|
7, 3, 1, /* left */\
|
|
7, 1, 5,\
|
|
3, 6, 2, /* top */\
|
|
3, 7, 6,\
|
|
4, 1, 0, /* bottom */\
|
|
4, 5, 1
|
|
|
|
#define S3L_CUBE_TRIANGLE_COUNT 12
|
|
|
|
/** Predefined texture coordinates of a cube, corresponding to triangles (NOT
|
|
vertices), to be used with S3L_CUBE_VERTICES and S3L_CUBE_TRIANGLES. */
|
|
#define S3L_CUBE_TEXCOORDS(m)\
|
|
m,m, 0,0, m,0,\
|
|
m,m, 0,m, 0,0,\
|
|
m,0, m,m, 0,m,\
|
|
m,0, 0,m, 0,0,\
|
|
0,0, m,0, m,m,\
|
|
m,m, 0,m, 0,0,\
|
|
0,m, 0,0, m,0,\
|
|
0,m, m,0, m,m,\
|
|
m,m, 0,0, m,0,\
|
|
m,m, 0,m, 0,0,\
|
|
0,m, m,0, m,m,\
|
|
0,m, 0,0, m,0
|
|
|
|
/**
|
|
Vector that consists of four scalars and can represent homogenous
|
|
coordinates, but is generally also used as Vec3 and Vec2.
|
|
*/
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Unit x;
|
|
S3L_Unit y;
|
|
S3L_Unit z;
|
|
S3L_Unit w;
|
|
} S3L_Vec4;
|
|
|
|
static inline void S3L_initVec4(S3L_Vec4 *v);
|
|
|
|
static inline void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added);
|
|
static inline void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted);
|
|
|
|
#define S3L_writeVec4(v)\
|
|
printf("Vec4: %d %d %d %d\n",((v).x),((v).y),((v).z),((v).w))
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Vec4 translation;
|
|
S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order:
|
|
1. z = by z (roll) CW looking along z+
|
|
2. x = by x (pitch) CW looking along x+
|
|
3. y = by y (yaw) CW looking along y+ */
|
|
S3L_Vec4 scale;
|
|
} S3L_Transform3D;
|
|
|
|
static inline void S3L_initTransoform3D(S3L_Transform3D *t);
|
|
|
|
/** Converts rotation transformation to three direction vectors of given length
|
|
(any one can be NULL, in which case it won't be computed).
|
|
*/
|
|
void S3L_rotationToDirections(
|
|
S3L_Vec4 rotation,
|
|
S3L_Unit length,
|
|
S3L_Vec4 *forw,
|
|
S3L_Vec4 *right,
|
|
S3L_Vec4 *up);
|
|
|
|
typedef S3L_Unit S3L_Mat4[4][4]; /**< 4x4 matrix, used mostly for 3D
|
|
transforms. The indexing is this:
|
|
matrix[column][row]. */
|
|
#define S3L_writeMat4(m)\
|
|
printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\
|
|
,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\
|
|
(m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\
|
|
(m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\
|
|
(m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3])
|
|
|
|
/** Initializes a 4x4 matrix to identity. */
|
|
static inline void S3L_initMat4(S3L_Mat4 *m);
|
|
|
|
void S3L_makeTranslationMat(
|
|
S3L_Unit offsetX,
|
|
S3L_Unit offsetY,
|
|
S3L_Unit offsetZ,
|
|
S3L_Mat4 *m);
|
|
|
|
/** Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with
|
|
S3L_FRACTIONS_PER_UNIT! */
|
|
void S3L_makeScaleMatrix(
|
|
S3L_Unit scaleX,
|
|
S3L_Unit scaleY,
|
|
S3L_Unit scaleZ,
|
|
S3L_Mat4 *m);
|
|
|
|
/** Makes a matrixfor rotation in the ZXY order. */
|
|
void S3L_makeRotationMatrixZXY(
|
|
S3L_Unit byX,
|
|
S3L_Unit byY,
|
|
S3L_Unit byZ,
|
|
S3L_Mat4 *m);
|
|
|
|
void S3L_makeRotationMatrixYXZ(
|
|
S3L_Unit byX,
|
|
S3L_Unit byY,
|
|
S3L_Unit byZ,
|
|
S3L_Mat4 *m);
|
|
|
|
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m);
|
|
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m);
|
|
|
|
/** Multiplies a vector by a matrix with normalization by
|
|
S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */
|
|
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m);
|
|
|
|
/** Same as S3L_vec4Xmat4 but faster, because this version doesn't compute the
|
|
W component of the result, which is usually not needed. */
|
|
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 *m);
|
|
|
|
/** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT.
|
|
Result is stored in the first matrix. The result represents a transformation
|
|
that has the same effect as applying the transformation represented by m1 and
|
|
then m2 (in that order). */
|
|
void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2);
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Unit focalLength; ///< Defines the field of view (FOV).
|
|
S3L_Transform3D transform;
|
|
} S3L_Camera;
|
|
|
|
static inline void S3L_initCamera(S3L_Camera *c);
|
|
|
|
typedef struct
|
|
{
|
|
uint8_t backfaceCulling;
|
|
uint8_t mode;
|
|
} S3L_DrawConfig;
|
|
|
|
void S3L_initDrawConfig(S3L_DrawConfig *config);
|
|
|
|
typedef struct
|
|
{
|
|
const S3L_Unit *vertices;
|
|
S3L_Index vertexCount;
|
|
const S3L_Index *triangles;
|
|
S3L_Index triangleCount;
|
|
S3L_Transform3D transform;
|
|
S3L_DrawConfig config;
|
|
} S3L_Model3D; ///< Represents a 3D model.
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Model3D *models;
|
|
S3L_Index modelCount;
|
|
S3L_Camera camera;
|
|
} S3L_Scene; ///< Represent the 3D scene to be rendered.
|
|
|
|
typedef struct
|
|
{
|
|
S3L_ScreenCoord x; ///< Screen X coordinate.
|
|
S3L_ScreenCoord y; ///< Screen Y coordinate.
|
|
|
|
S3L_Unit barycentric0; /**< Barycentric coord 0 (corresponds to 1st vertex).
|
|
Together with 1 and 2 coords these serve to
|
|
locate the pixel on a triangle and interpolate
|
|
values between it's three points. The sum of the
|
|
three coordinates will always be exactly
|
|
S3L_FRACTIONS_PER_UNIT. */
|
|
S3L_Unit barycentric1; ///< Baryc. coord 1 (corresponds to 2nd vertex).
|
|
S3L_Unit barycentric2; ///< Baryc. coord 2 (corresponds to 3rd vertex).
|
|
S3L_Index triangleID; ///< Triangle index.
|
|
S3L_Index modelID;
|
|
S3L_Unit depth; ///< Depth (only if depth is turned on).
|
|
} S3L_PixelInfo; /**< Used to pass the info about a rasterized pixel
|
|
(fragment) to the user-defined drawing func. */
|
|
|
|
static inline void S3L_initPixelInfo(S3L_PixelInfo *p);
|
|
|
|
#define S3L_BACKFACE_CULLING_NONE 0
|
|
#define S3L_BACKFACE_CULLING_CW 1
|
|
#define S3L_BACKFACE_CULLING_CCW 2
|
|
|
|
#define S3L_MODE_TRIANGLES 0
|
|
#define S3L_MODE_LINES 1
|
|
#define S3L_MODE_POINTS 2
|
|
|
|
// general helper functions
|
|
static inline S3L_Unit S3L_abs(S3L_Unit value);
|
|
static inline S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2);
|
|
static inline S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2);
|
|
static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod);
|
|
static inline S3L_Unit S3L_nonZero(S3L_Unit value);
|
|
|
|
S3L_Unit S3L_sin(S3L_Unit x);
|
|
static inline S3L_Unit S3L_cos(S3L_Unit x);
|
|
|
|
/** Interpolated between two values, v1 and v2, in the same ratio as t is to
|
|
tMax. Does NOT prevent zero division. */
|
|
static inline S3L_Unit S3L_interpolate(
|
|
S3L_Unit v1,
|
|
S3L_Unit v2,
|
|
S3L_Unit t,
|
|
S3L_Unit tMax);
|
|
|
|
/** Same as S3L_interpolate but with v1 == 0. Should be faster. */
|
|
static inline S3L_Unit S3L_interpolateFrom0(
|
|
S3L_Unit v2,
|
|
S3L_Unit t,
|
|
S3L_Unit tMax);
|
|
|
|
/** Like S3L_interpolate, but uses a parameter that goes from 0 to
|
|
S3L_FRACTIONS_PER_UNIT - 1, which can be faster. */
|
|
static inline S3L_Unit S3L_interpolateByUnit(
|
|
S3L_Unit v1,
|
|
S3L_Unit v2,
|
|
S3L_Unit t);
|
|
|
|
/** Same as S3L_interpolateByUnit but with v1 == 0. Should be faster. */
|
|
static inline S3L_Unit S3L_interpolateByUnitFrom0(
|
|
S3L_Unit v2,
|
|
S3L_Unit t);
|
|
|
|
/** Returns a value interpolated between the three triangle vertices based on
|
|
barycentric coordinates. */
|
|
static inline S3L_Unit S3L_interpolateBarycentric(
|
|
S3L_Unit value0,
|
|
S3L_Unit value1,
|
|
S3L_Unit value2,
|
|
S3L_Unit barycentric0,
|
|
S3L_Unit barycentric1,
|
|
S3L_Unit barycentric2);
|
|
|
|
static inline void S3L_mapProjectionPlaneToScreen(
|
|
S3L_Vec4 point,
|
|
S3L_ScreenCoord *screenX,
|
|
S3L_ScreenCoord *screenY);
|
|
|
|
/** Draws a triangle according to given config. The vertices are specified in
|
|
projection-plane space (NOT screen space!) -- they wll be mapped to screen
|
|
space by thies function. If perspective correction is enabled, each vertex
|
|
has to have a depth (Z position in camera space) specified in the Z
|
|
component. */
|
|
void S3L_drawTriangle(
|
|
S3L_Vec4 point0,
|
|
S3L_Vec4 point1,
|
|
S3L_Vec4 point2,
|
|
const S3L_DrawConfig *config,
|
|
const S3L_Camera *camera,
|
|
S3L_Index modelID,
|
|
S3L_Index triangleID);
|
|
|
|
/** This should be called before rendering each frame. The function clears
|
|
buffers and does potentially other things needed for the frame. */
|
|
void S3L_newFrame();
|
|
|
|
void S3L_zBufferClear();
|
|
void S3L_stencilBufferClear();
|
|
|
|
static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle);
|
|
|
|
//=============================================================================
|
|
// privates
|
|
|
|
#if S3L_Z_BUFFER == S3L_Z_BUFFER_FULL
|
|
#define S3L_COMPUTE_DEPTH 1
|
|
#define S3L_MAX_DEPTH 2147483647
|
|
S3L_Unit S3L_zBuffer[S3L_RESOLUTION_X * S3L_RESOLUTION_Y];
|
|
#define S3L_zBufferFormat(depth) (depth)
|
|
#elif S3L_Z_BUFFER == S3L_Z_BUFFER_BYTE
|
|
#define S3L_COMPUTE_DEPTH 1
|
|
#define S3L_MAX_DEPTH 255
|
|
uint8_t S3L_zBuffer[S3L_RESOLUTION_X * S3L_RESOLUTION_Y];
|
|
#define S3L_zBufferFormat(depth) (((depth) >> 5) & 0x000000FF)
|
|
#endif
|
|
|
|
#if S3L_Z_BUFFER
|
|
static inline int8_t S3L_zTest(
|
|
S3L_ScreenCoord x,
|
|
S3L_ScreenCoord y,
|
|
S3L_Unit depth)
|
|
{
|
|
uint32_t index = y * S3L_RESOLUTION_X + x;
|
|
|
|
depth = S3L_zBufferFormat(depth);
|
|
|
|
if (depth < S3L_zBuffer[index])
|
|
{
|
|
S3L_zBuffer[index] = depth;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if S3L_STENCIL_BUFFER
|
|
#define S3L_STENCIL_BUFFER_SIZE\
|
|
((S3L_RESOLUTION_X * S3L_RESOLUTION_Y - 1) / 8 + 1)
|
|
uint8_t S3L_stencilBuffer[S3L_STENCIL_BUFFER_SIZE];
|
|
|
|
static inline int8_t S3L_stencilTest(
|
|
S3L_ScreenCoord x,
|
|
S3L_ScreenCoord y)
|
|
{
|
|
uint32_t index = y * S3L_RESOLUTION_X + x;
|
|
uint32_t bit = (index & 0x00000007);
|
|
index = index >> 3;
|
|
|
|
uint8_t val = S3L_stencilBuffer[index];
|
|
|
|
if ((val >> bit) & 0x1)
|
|
return 0;
|
|
|
|
S3L_stencilBuffer[index] = val | (0x1 << bit);
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#define S3L_COMPUTE_LERP_DEPTH\
|
|
(S3L_COMPUTE_DEPTH && (S3L_PERSPECTIVE_CORRECTION != 1))
|
|
|
|
#define S3L_SIN_TABLE_LENGTH 128
|
|
static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] =
|
|
{
|
|
/* 511 was chosen here as a highest number that doesn't overflow during
|
|
compilation for S3L_FRACTIONS_PER_UNIT == 1024 */
|
|
|
|
(0*S3L_FRACTIONS_PER_UNIT)/511, (6*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(12*S3L_FRACTIONS_PER_UNIT)/511, (18*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(25*S3L_FRACTIONS_PER_UNIT)/511, (31*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(37*S3L_FRACTIONS_PER_UNIT)/511, (43*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(50*S3L_FRACTIONS_PER_UNIT)/511, (56*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(62*S3L_FRACTIONS_PER_UNIT)/511, (68*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(74*S3L_FRACTIONS_PER_UNIT)/511, (81*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(87*S3L_FRACTIONS_PER_UNIT)/511, (93*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(99*S3L_FRACTIONS_PER_UNIT)/511, (105*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(111*S3L_FRACTIONS_PER_UNIT)/511, (118*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(124*S3L_FRACTIONS_PER_UNIT)/511, (130*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(136*S3L_FRACTIONS_PER_UNIT)/511, (142*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(148*S3L_FRACTIONS_PER_UNIT)/511, (154*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(160*S3L_FRACTIONS_PER_UNIT)/511, (166*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(172*S3L_FRACTIONS_PER_UNIT)/511, (178*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(183*S3L_FRACTIONS_PER_UNIT)/511, (189*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(195*S3L_FRACTIONS_PER_UNIT)/511, (201*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(207*S3L_FRACTIONS_PER_UNIT)/511, (212*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(218*S3L_FRACTIONS_PER_UNIT)/511, (224*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(229*S3L_FRACTIONS_PER_UNIT)/511, (235*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(240*S3L_FRACTIONS_PER_UNIT)/511, (246*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(251*S3L_FRACTIONS_PER_UNIT)/511, (257*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(262*S3L_FRACTIONS_PER_UNIT)/511, (268*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(273*S3L_FRACTIONS_PER_UNIT)/511, (278*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(283*S3L_FRACTIONS_PER_UNIT)/511, (289*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(294*S3L_FRACTIONS_PER_UNIT)/511, (299*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(304*S3L_FRACTIONS_PER_UNIT)/511, (309*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(314*S3L_FRACTIONS_PER_UNIT)/511, (319*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(324*S3L_FRACTIONS_PER_UNIT)/511, (328*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(333*S3L_FRACTIONS_PER_UNIT)/511, (338*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(343*S3L_FRACTIONS_PER_UNIT)/511, (347*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(352*S3L_FRACTIONS_PER_UNIT)/511, (356*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(361*S3L_FRACTIONS_PER_UNIT)/511, (365*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(370*S3L_FRACTIONS_PER_UNIT)/511, (374*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(378*S3L_FRACTIONS_PER_UNIT)/511, (382*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(386*S3L_FRACTIONS_PER_UNIT)/511, (391*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(395*S3L_FRACTIONS_PER_UNIT)/511, (398*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(402*S3L_FRACTIONS_PER_UNIT)/511, (406*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(410*S3L_FRACTIONS_PER_UNIT)/511, (414*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(417*S3L_FRACTIONS_PER_UNIT)/511, (421*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(424*S3L_FRACTIONS_PER_UNIT)/511, (428*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(431*S3L_FRACTIONS_PER_UNIT)/511, (435*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(438*S3L_FRACTIONS_PER_UNIT)/511, (441*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(444*S3L_FRACTIONS_PER_UNIT)/511, (447*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(450*S3L_FRACTIONS_PER_UNIT)/511, (453*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(456*S3L_FRACTIONS_PER_UNIT)/511, (459*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(461*S3L_FRACTIONS_PER_UNIT)/511, (464*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(467*S3L_FRACTIONS_PER_UNIT)/511, (469*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(472*S3L_FRACTIONS_PER_UNIT)/511, (474*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(476*S3L_FRACTIONS_PER_UNIT)/511, (478*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(481*S3L_FRACTIONS_PER_UNIT)/511, (483*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(485*S3L_FRACTIONS_PER_UNIT)/511, (487*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(488*S3L_FRACTIONS_PER_UNIT)/511, (490*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(492*S3L_FRACTIONS_PER_UNIT)/511, (494*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(495*S3L_FRACTIONS_PER_UNIT)/511, (497*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(498*S3L_FRACTIONS_PER_UNIT)/511, (499*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(501*S3L_FRACTIONS_PER_UNIT)/511, (502*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(503*S3L_FRACTIONS_PER_UNIT)/511, (504*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(505*S3L_FRACTIONS_PER_UNIT)/511, (506*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(507*S3L_FRACTIONS_PER_UNIT)/511, (507*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(508*S3L_FRACTIONS_PER_UNIT)/511, (509*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(509*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511,
|
|
(510*S3L_FRACTIONS_PER_UNIT)/511, (510*S3L_FRACTIONS_PER_UNIT)/511
|
|
};
|
|
|
|
#define S3L_SIN_TABLE_UNIT_STEP\
|
|
(S3L_FRACTIONS_PER_UNIT / (S3L_SIN_TABLE_LENGTH * 4))
|
|
|
|
void S3L_initVec4(S3L_Vec4 *v)
|
|
{
|
|
v->x = 0; v->y = 0; v->z = 0; v->w = S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added)
|
|
{
|
|
result->x += added.x;
|
|
result->y += added.y;
|
|
result->z += added.z;
|
|
}
|
|
|
|
void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted)
|
|
{
|
|
result->x -= substracted.x;
|
|
result->y -= substracted.y;
|
|
result->z -= substracted.z;
|
|
}
|
|
|
|
void S3L_initMat4(S3L_Mat4 *m)
|
|
{
|
|
#define M(x,y) (*m)[x][y]
|
|
#define S S3L_FRACTIONS_PER_UNIT
|
|
|
|
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
|
|
{
|
|
S3L_Vec4 vBackup;
|
|
|
|
vBackup.x = v->x;
|
|
vBackup.y = v->y;
|
|
vBackup.z = v->z;
|
|
vBackup.w = v->w;
|
|
|
|
// TODO: try alternative operation orders to optimize
|
|
|
|
#define dotCol(col)\
|
|
(vBackup.x * (*m)[col][0]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.y * (*m)[col][1]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.z * (*m)[col][2]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.w * (*m)[col][3]) / S3L_FRACTIONS_PER_UNIT
|
|
|
|
v->x = dotCol(0);
|
|
v->y = dotCol(1);
|
|
v->z = dotCol(2);
|
|
v->w = dotCol(3);
|
|
}
|
|
|
|
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 *m)
|
|
{
|
|
S3L_Vec4 vBackup;
|
|
|
|
#undef dotCol
|
|
#define dotCol(col)\
|
|
(vBackup.x * (*m)[col][0]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.y * (*m)[col][1]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(vBackup.z * (*m)[col][2]) / S3L_FRACTIONS_PER_UNIT +\
|
|
(*m)[col][3]
|
|
|
|
vBackup.x = v->x;
|
|
vBackup.y = v->y;
|
|
vBackup.z = v->z;
|
|
vBackup.w = v->w;
|
|
|
|
v->x = dotCol(0);
|
|
v->y = dotCol(1);
|
|
v->z = dotCol(2);
|
|
v->w = S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
#undef dotCol
|
|
|
|
S3L_Unit S3L_abs(S3L_Unit value)
|
|
{
|
|
return value >= 0 ? value : -1 * value;
|
|
}
|
|
|
|
S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2)
|
|
{
|
|
return v1 >= v2 ? v2 : v1;
|
|
}
|
|
|
|
S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2)
|
|
{
|
|
return v1 >= v2 ? v1 : v2;
|
|
}
|
|
|
|
S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod)
|
|
{
|
|
return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
|
|
}
|
|
|
|
S3L_Unit S3L_nonZero(S3L_Unit value)
|
|
{
|
|
return value != 0 ? value : 1;
|
|
}
|
|
|
|
S3L_Unit S3L_interpolate(S3L_Unit v1, S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
|
|
{
|
|
return v1 + ((v2 - v1) * t) / tMax;
|
|
}
|
|
|
|
S3L_Unit S3L_interpolateByUnit(S3L_Unit v1, S3L_Unit v2, S3L_Unit t)
|
|
{
|
|
return v1 + ((v2 - v1) * t) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
S3L_Unit S3L_interpolateByUnitFrom0(S3L_Unit v2, S3L_Unit t)
|
|
{
|
|
return (v2 * t) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
S3L_Unit S3L_interpolateFrom0(S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
|
|
{
|
|
return (v2 * t) / tMax;
|
|
}
|
|
|
|
void S3L_mat4Xmat4(S3L_Mat4 *m1, S3L_Mat4 *m2)
|
|
{
|
|
S3L_Mat4 mat1;
|
|
|
|
for (uint16_t row = 0; row < 4; ++row)
|
|
for (uint16_t col = 0; col < 4; ++col)
|
|
mat1[col][row] = (*m1)[col][row];
|
|
|
|
for (uint16_t row = 0; row < 4; ++row)
|
|
for (uint16_t col = 0; col < 4; ++col)
|
|
{
|
|
(*m1)[col][row] = 0;
|
|
|
|
for (uint16_t i = 0; i < 4; ++i)
|
|
(*m1)[col][row] +=
|
|
(mat1[i][row] * (*m2)[col][i]) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
}
|
|
|
|
S3L_Unit S3L_sin(S3L_Unit x)
|
|
{
|
|
x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4);
|
|
int8_t positive = 1;
|
|
|
|
if (x < S3L_SIN_TABLE_LENGTH)
|
|
x = x;
|
|
else if (x < S3L_SIN_TABLE_LENGTH * 2)
|
|
x = S3L_SIN_TABLE_LENGTH * 2 - x - 1;
|
|
else if (x < S3L_SIN_TABLE_LENGTH * 3)
|
|
{
|
|
x = x - S3L_SIN_TABLE_LENGTH * 2;
|
|
positive = 0;
|
|
}
|
|
else
|
|
{
|
|
x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1;
|
|
positive = 0;
|
|
}
|
|
|
|
return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x];
|
|
}
|
|
|
|
S3L_Unit S3L_cos(S3L_Unit x)
|
|
{
|
|
return S3L_sin(x - S3L_FRACTIONS_PER_UNIT / 4);
|
|
}
|
|
|
|
void S3L_makeTranslationMat(
|
|
S3L_Unit offsetX,
|
|
S3L_Unit offsetY,
|
|
S3L_Unit offsetZ,
|
|
S3L_Mat4 *m)
|
|
{
|
|
#define M(x,y) (*m)[x][y]
|
|
#define S S3L_FRACTIONS_PER_UNIT
|
|
|
|
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
void S3L_makeScaleMatrix(
|
|
S3L_Unit scaleX,
|
|
S3L_Unit scaleY,
|
|
S3L_Unit scaleZ,
|
|
S3L_Mat4 *m)
|
|
{
|
|
#define M(x,y) (*m)[x][y]
|
|
|
|
M(0,0) = scaleX; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = scaleY; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = scaleZ; M(3,2) = 0;
|
|
M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_FRACTIONS_PER_UNIT;
|
|
|
|
#undef M
|
|
}
|
|
|
|
void S3L_makeRotationMatrixZXY(
|
|
S3L_Unit byX,
|
|
S3L_Unit byY,
|
|
S3L_Unit byZ,
|
|
S3L_Mat4 *m)
|
|
{
|
|
S3L_Unit sx = S3L_sin(byX);
|
|
S3L_Unit sy = S3L_sin(byY);
|
|
S3L_Unit sz = S3L_sin(byZ);
|
|
|
|
S3L_Unit cx = S3L_cos(byX);
|
|
S3L_Unit cy = S3L_cos(byY);
|
|
S3L_Unit cz = S3L_cos(byZ);
|
|
|
|
#define M(x,y) (*m)[x][y]
|
|
#define S S3L_FRACTIONS_PER_UNIT
|
|
|
|
M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S);
|
|
M(1,0) = (cx * sz) / S;
|
|
M(2,0) = (cy * sx * sz) / (S * S) - (cz * sy) / S;
|
|
M(3,0) = 0;
|
|
|
|
M(0,1) = (cz * sy * sx) / (S * S) - (cy * sz) / S;
|
|
M(1,1) = (cx * cz) / S;
|
|
M(2,1) = (cy * cz * sx) / (S * S) + (sy * sz) / S;
|
|
M(3,1) = 0;
|
|
|
|
M(0,2) = (cx * sy) / S;
|
|
M(1,2) = -1 * sx;
|
|
M(2,2) = (cy * cx) / S;
|
|
M(3,2) = 0;
|
|
|
|
M(0,3) = 0;
|
|
M(1,3) = 0;
|
|
M(2,3) = 0;
|
|
M(3,3) = S3L_FRACTIONS_PER_UNIT;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
void S3L_makeRotationMatrixYXZ(
|
|
S3L_Unit byX,
|
|
S3L_Unit byY,
|
|
S3L_Unit byZ,
|
|
S3L_Mat4 *m)
|
|
{
|
|
S3L_Unit sx = S3L_sin(byX);
|
|
S3L_Unit sy = S3L_sin(byY);
|
|
S3L_Unit sz = S3L_sin(byZ);
|
|
|
|
S3L_Unit cx = S3L_cos(byX);
|
|
S3L_Unit cy = S3L_cos(byY);
|
|
S3L_Unit cz = S3L_cos(byZ);
|
|
|
|
#define M(x,y) (*m)[x][y]
|
|
#define S S3L_FRACTIONS_PER_UNIT
|
|
|
|
M(0,0) = (cy * cz) / S - (sy * sx * sz) / (S * S);
|
|
M(1,0) = (cy * sz) / S + (sx * sy * cz) / (S * S);
|
|
M(2,0) = -1 * (cx * sy) / S;
|
|
M(3,0) = 0;
|
|
|
|
M(0,1) = -1 * (sz * cx) / S;
|
|
M(1,1) = (cz * cx) / S;
|
|
M(2,1) = sx;
|
|
M(3,1) = 0;
|
|
|
|
M(0,2) = (cz * sy) / S + (sz * sx * cy) / (S * S);
|
|
M(1,2) = (sz * sy) / S - (cz * sx * cy) / (S * S);
|
|
M(2,2) = (cx * cy) / S;
|
|
M(3,2) = 0;
|
|
|
|
M(0,3) = 0;
|
|
M(1,3) = 0;
|
|
M(2,3) = 0;
|
|
M(3,3) = S3L_FRACTIONS_PER_UNIT;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
void S3L_initTransoform3D(S3L_Transform3D *t)
|
|
{
|
|
S3L_initVec4(&(t->translation));
|
|
S3L_initVec4(&(t->rotation));
|
|
t->scale.x = S3L_FRACTIONS_PER_UNIT;
|
|
t->scale.y = S3L_FRACTIONS_PER_UNIT;
|
|
t->scale.z = S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
void S3L_initCamera(S3L_Camera *c)
|
|
{
|
|
c->focalLength = S3L_FRACTIONS_PER_UNIT;
|
|
S3L_initTransoform3D(&(c->transform));
|
|
}
|
|
|
|
void S3L_rotationToDirections(
|
|
S3L_Vec4 rotation,
|
|
S3L_Unit length,
|
|
S3L_Vec4 *forw,
|
|
S3L_Vec4 *right,
|
|
S3L_Vec4 *up)
|
|
{
|
|
S3L_Mat4 m;
|
|
|
|
S3L_makeRotationMatrixZXY(-1 * rotation.x,-1 * rotation.y,-1 * rotation.z,&m);
|
|
|
|
if (forw != 0)
|
|
{
|
|
forw->x = 0;
|
|
forw->y = 0;
|
|
forw->z = length;
|
|
S3L_vec3Xmat4(forw,&m);
|
|
}
|
|
|
|
if (right != 0)
|
|
{
|
|
right->x = length;
|
|
right->y = 0;
|
|
right->z = 0;
|
|
S3L_vec3Xmat4(right,&m);
|
|
}
|
|
|
|
if (up != 0)
|
|
{
|
|
up->x = 0;
|
|
up->y = length;
|
|
up->z = 0;
|
|
S3L_vec3Xmat4(up,&m);
|
|
}
|
|
}
|
|
|
|
void S3L_initPixelInfo(S3L_PixelInfo *p) // TODO: maybe non-pointer for p
|
|
{ // could be faster?
|
|
p->x = 0;
|
|
p->y = 0;
|
|
p->barycentric0 = S3L_FRACTIONS_PER_UNIT;
|
|
p->barycentric1 = 0;
|
|
p->barycentric2 = 0;
|
|
p->triangleID = 0;
|
|
p->depth = 0;
|
|
}
|
|
|
|
void S3L_initDrawConfig(S3L_DrawConfig *config)
|
|
{
|
|
config->backfaceCulling = 1;
|
|
config->mode = S3L_MODE_TRIANGLES;
|
|
}
|
|
|
|
void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl
|
|
// TODO: ^ should be inline?
|
|
typedef struct
|
|
{
|
|
int16_t steps;
|
|
int16_t err;
|
|
S3L_ScreenCoord x;
|
|
S3L_ScreenCoord y;
|
|
|
|
int16_t *majorCoord;
|
|
int16_t *minorCoord;
|
|
int16_t majorIncrement;
|
|
int16_t minorIncrement;
|
|
int16_t majorDiff;
|
|
int16_t minorDiff;
|
|
} S3L_BresenhamState; ///< State of drawing a line with Bresenham algorithm.
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Unit valueScaled;
|
|
S3L_Unit stepScaled;
|
|
} S3L_FastLerpState;
|
|
|
|
#define S3L_getFastLerpValue(state)\
|
|
(state.valueScaled >> S3L_FAST_LERP_QUALITY)
|
|
|
|
#define S3L_stepFastLerp(state)\
|
|
state.valueScaled += state.stepScaled
|
|
|
|
typedef struct
|
|
{
|
|
S3L_ScreenCoord p0[2]; ///< 2D coordinates of the 1st point projection
|
|
S3L_ScreenCoord p1[2]; ///< 2D coordinates of the 2nd point projection
|
|
|
|
S3L_Unit a[3]; ///< 3D coordinates of the 1st projected point of the line
|
|
S3L_Unit b[3]; ///< 3D coordinates of the 2nd projected point of the line
|
|
S3L_Unit pointDifference[3]; ///< [bx - ax, by - ay, bz - cz]
|
|
|
|
S3L_ScreenCoord c[2]; /**< helper point to for a plane for the intersection
|
|
with line */
|
|
|
|
S3L_Unit fcx; ///< precomputed helper product
|
|
S3L_Unit fcy; ///< precomputed helper product
|
|
|
|
S3L_Unit focalLength;
|
|
} S3L_PerspectiveCorrectionState; ///< State for computing persp. correction.
|
|
|
|
/**
|
|
Initializes the state of perspective correction along a line. The correction
|
|
itself is then done using S3L_correctPerspective function, using the state.
|
|
*/
|
|
void S3L_initPerspectiveCorrectionState(
|
|
S3L_ScreenCoord x0,
|
|
S3L_ScreenCoord y0,
|
|
S3L_Unit depth0,
|
|
S3L_ScreenCoord x1,
|
|
S3L_ScreenCoord y1,
|
|
S3L_Unit depth1,
|
|
S3L_Unit focalLength,
|
|
S3L_PerspectiveCorrectionState *state)
|
|
{
|
|
state->focalLength = focalLength;
|
|
|
|
state->p0[0] = x0;
|
|
state->p0[1] = y0;
|
|
|
|
state->p1[0] = x1;
|
|
state->p1[1] = y1;
|
|
|
|
state->a[0] = (x0 * (depth0 + focalLength)) / focalLength;
|
|
state->a[1] = (y0 * (depth0 + focalLength)) / focalLength;
|
|
state->a[2] = depth0;
|
|
|
|
state->b[0] = (x1 * (depth1 + focalLength)) / focalLength;
|
|
state->b[1] = (y1 * (depth1 + focalLength)) / focalLength;
|
|
state->b[2] = depth1;
|
|
|
|
state->pointDifference[0] = state->b[0] - state->a[0];
|
|
state->pointDifference[1] = state->b[1] - state->a[1];
|
|
state->pointDifference[2] = state->b[2] - state->a[2];
|
|
|
|
state->c[0] = x1 + y1 - y0;
|
|
state->c[1] = y1 - x1 + x0;
|
|
|
|
state->fcx = focalLength * state->c[0];
|
|
state->fcy = focalLength * state->c[1];
|
|
}
|
|
|
|
S3L_Unit S3L_correctPerspective(
|
|
S3L_Unit interpolationParameter, S3L_PerspectiveCorrectionState *state)
|
|
{
|
|
S3L_Unit p[2]; // lin. interpolated position between the projections
|
|
|
|
// TODO: perhaps this could be interpolated faster by stepping?
|
|
p[0] =
|
|
S3L_interpolateByUnit(state->p0[0],state->p1[0],interpolationParameter);
|
|
|
|
p[1] =
|
|
S3L_interpolateByUnit(state->p0[1],state->p1[1],interpolationParameter);
|
|
|
|
S3L_Unit a, b, c, d; // plane coeficients
|
|
|
|
a = state->focalLength * p[1] - state->fcy;
|
|
b = state->fcx - state->focalLength * p[0];
|
|
c = p[0] * state->c[1] - p[1] * state->c[0];
|
|
d = state->focalLength * c;
|
|
|
|
a >>= 4; // TODO: this sometimes prevents overflow, but should be solved better!
|
|
b >>= 4;
|
|
c >>= 4;
|
|
d >>= 4;
|
|
|
|
S3L_Unit result =
|
|
(
|
|
- a * state->a[0] - b * state->a[1] - c * state->a[2] - d
|
|
)
|
|
/
|
|
S3L_nonZero(
|
|
(
|
|
a * state->pointDifference[0] +
|
|
b * state->pointDifference[1] +
|
|
c * state->pointDifference[2]
|
|
) / S3L_FRACTIONS_PER_UNIT
|
|
);
|
|
|
|
return result < 0 ? 0 :
|
|
(result > S3L_FRACTIONS_PER_UNIT ? S3L_FRACTIONS_PER_UNIT : result);
|
|
}
|
|
|
|
static inline S3L_Unit S3L_interpolateBarycentric(
|
|
S3L_Unit value0,
|
|
S3L_Unit value1,
|
|
S3L_Unit value2,
|
|
S3L_Unit barycentric0,
|
|
S3L_Unit barycentric1,
|
|
S3L_Unit barycentric2)
|
|
{
|
|
return
|
|
(
|
|
(value0 * barycentric0) +
|
|
(value1 * barycentric1) +
|
|
(value2 * barycentric2)
|
|
) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
void S3L_bresenhamInit(S3L_BresenhamState *state, int16_t x0, int16_t y0,
|
|
int16_t x1, int16_t y1)
|
|
{
|
|
int16_t dx = x1 - x0;
|
|
int16_t dy = y1 - y0;
|
|
|
|
int16_t absDx = S3L_abs(dx);
|
|
int16_t absDy = S3L_abs(dy);
|
|
|
|
if (absDx >= absDy)
|
|
{
|
|
state->majorCoord = &(state->x);
|
|
state->minorCoord = &(state->y);
|
|
|
|
state->minorDiff = 2 * absDy;
|
|
state->majorDiff = 2 * absDx;
|
|
state->err = 2 * dy - dx;
|
|
|
|
state->majorIncrement = dx >= 0 ? 1 : -1;
|
|
state->minorIncrement = dy >= 0 ? 1 : -1;
|
|
|
|
state->steps = absDx;
|
|
}
|
|
else
|
|
{
|
|
state->majorCoord = &(state->y);
|
|
state->minorCoord = &(state->x);
|
|
|
|
state->minorDiff = 2 * absDx;
|
|
state->majorDiff = 2 * absDy;
|
|
state->err = 2 * dx - dy;
|
|
|
|
state->majorIncrement = dy >= 0 ? 1 : -1;
|
|
state->minorIncrement = dx >= 0 ? 1 : -1;
|
|
|
|
state->steps = absDy;
|
|
}
|
|
|
|
state->x = x0;
|
|
state->y = y0;
|
|
}
|
|
|
|
int S3L_bresenhamStep(S3L_BresenhamState *state)
|
|
{
|
|
state->steps--;
|
|
|
|
(*state->majorCoord) += state->majorIncrement;
|
|
|
|
if (state->err > 0)
|
|
{
|
|
(*state->minorCoord) += state->minorIncrement;
|
|
state->err -= state->majorDiff;
|
|
}
|
|
|
|
state->err += state->minorDiff;
|
|
|
|
return state->steps >= 0;
|
|
}
|
|
|
|
void S3L_mapProjectionPlaneToScreen(
|
|
S3L_Vec4 point,
|
|
S3L_ScreenCoord *screenX,
|
|
S3L_ScreenCoord *screenY)
|
|
{
|
|
*screenX =
|
|
S3L_HALF_RESOLUTION_X +
|
|
(point.x * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
|
|
|
|
*screenY =
|
|
S3L_HALF_RESOLUTION_Y -
|
|
(point.y * S3L_HALF_RESOLUTION_X) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
void S3L_zBufferClear()
|
|
{
|
|
#if S3L_Z_BUFFER
|
|
for (uint32_t i = 0; i < S3L_RESOLUTION_X * S3L_RESOLUTION_Y; ++i)
|
|
S3L_zBuffer[i] = S3L_MAX_DEPTH;
|
|
#endif
|
|
}
|
|
|
|
void S3L_stencilBufferClear()
|
|
{
|
|
#if S3L_STENCIL_BUFFER
|
|
for (uint32_t i = 0; i < S3L_STENCIL_BUFFER_SIZE; ++i)
|
|
S3L_stencilBuffer[i] = 0;
|
|
#endif
|
|
}
|
|
|
|
void S3L_newFrame()
|
|
{
|
|
S3L_zBufferClear();
|
|
S3L_stencilBufferClear();
|
|
}
|
|
|
|
void _S3L_drawFilledTriangle(
|
|
S3L_Vec4 point0,
|
|
S3L_Vec4 point1,
|
|
S3L_Vec4 point2,
|
|
const S3L_Camera *camera,
|
|
S3L_PixelInfo *p)
|
|
{
|
|
S3L_Vec4 *tPointPP, *lPointPP, *rPointPP; /* points in projction plane space
|
|
(in Units, normalized by
|
|
S3L_FRACTIONS_PER_UNIT) */
|
|
S3L_ScreenCoord x0, y0, x1, y1, x2, y2; /* points in screen space (pixel
|
|
coordinates) */
|
|
|
|
S3L_mapProjectionPlaneToScreen(point0,&x0,&y0);
|
|
S3L_mapProjectionPlaneToScreen(point1,&x1,&y1);
|
|
S3L_mapProjectionPlaneToScreen(point2,&x2,&y2);
|
|
|
|
S3L_ScreenCoord
|
|
tPointSx, tPointSy, // top point coords, in screen space
|
|
lPointSx, lPointSy, // left point coords, in screen space
|
|
rPointSx, rPointSy; // right point coords, in screen space
|
|
|
|
S3L_Unit *barycentric0; // bar. coord that gets higher from L to R
|
|
S3L_Unit *barycentric1; // bar. coord that gets higher from R to L
|
|
S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up
|
|
|
|
// sort the points:
|
|
|
|
#define assignPoints(t,a,b)\
|
|
{\
|
|
tPointSx = x##t;\
|
|
tPointSy = y##t;\
|
|
tPointPP = &point##t;\
|
|
barycentric2 = &(p->barycentric##t);\
|
|
int16_t aDx = x##a - x##t;\
|
|
int16_t bDx = x##b - x##t;\
|
|
int16_t aDy = S3L_nonZero(y##a - y##t);\
|
|
int16_t bDy = S3L_nonZero(y##b - y##t);\
|
|
if ((aDx << 5) / aDy < (bDx << 5) / bDy)\
|
|
{\
|
|
lPointSx = x##a; lPointSy = y##a;\
|
|
rPointSx = x##b; rPointSy = y##b;\
|
|
lPointPP = &point##a; rPointPP = &point##b;\
|
|
barycentric0 = &(p->barycentric##b);\
|
|
barycentric1 = &(p->barycentric##a);\
|
|
}\
|
|
else\
|
|
{\
|
|
lPointSx = x##b; lPointSy = y##b;\
|
|
rPointSx = x##a; rPointSy = y##a;\
|
|
lPointPP = &point##b; rPointPP = &point##a;\
|
|
barycentric0 = &(p->barycentric##a);\
|
|
barycentric1 = &(p->barycentric##b);\
|
|
}\
|
|
}
|
|
|
|
if (y0 <= y1)
|
|
{
|
|
if (y0 <= y2)
|
|
assignPoints(0,1,2)
|
|
else
|
|
assignPoints(2,0,1)
|
|
}
|
|
else
|
|
{
|
|
if (y1 <= y2)
|
|
assignPoints(1,0,2)
|
|
else
|
|
assignPoints(2,0,1)
|
|
}
|
|
|
|
#undef assignPoints
|
|
|
|
// now draw the triangle line by line:
|
|
|
|
S3L_ScreenCoord splitY; // Y of the vertically middle point of the triangle
|
|
S3L_ScreenCoord endY; // bottom Y of the whole triangle
|
|
int splitOnLeft; /* whether splitY is the y coord. of left or right
|
|
point */
|
|
|
|
if (rPointSy <= lPointSy)
|
|
{
|
|
splitY = rPointSy;
|
|
splitOnLeft = 0;
|
|
endY = lPointSy;
|
|
}
|
|
else
|
|
{
|
|
splitY = lPointSy;
|
|
splitOnLeft = 1;
|
|
endY = rPointSy;
|
|
}
|
|
|
|
S3L_ScreenCoord currentY = tPointSy;
|
|
|
|
/* We'll be using an algorithm similar to Bresenham line algorithm. The
|
|
specifics of this algorithm are among others:
|
|
|
|
- drawing possibly a NON-CONTINUOUS line
|
|
- NOT tracing the line exactly, but rather rasterizing one the right
|
|
side of it, according to the pixel CENTERS, INCLUDING the pixel
|
|
centers
|
|
|
|
The principle is this:
|
|
|
|
- Move vertically by pixels and accumulate the error (abs(dx/dy)).
|
|
- If the error is greater than one (crossed the next pixel center), keep
|
|
moving horizontally and substracting 1 from the error until it is less
|
|
than 1 again.
|
|
- To make this INTEGER ONLY, scale the case so that distance between
|
|
pixels is equal to dy (instead of 1). This way the error becomes
|
|
dx/dy * dy == dx, and we're comparing the error to (and potentially
|
|
substracting) 1 * dy == dy. */
|
|
|
|
int16_t
|
|
/* triangle side:
|
|
left right */
|
|
lX, rX, // current x position on the screen
|
|
lDx, rDx, // dx (end point - start point)
|
|
lDy, rDy, // dy (end point - start point)
|
|
lInc, rInc, // direction in which to increment (1 or -1)
|
|
lErr, rErr, // current error (Bresenham)
|
|
lErrCmp, rErrCmp, // helper for deciding comparison (> vs >=)
|
|
lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
|
|
lErrSub, rErrSub; // error value to substract when moving in x direction
|
|
|
|
S3L_FastLerpState lSideFLS, rSideFLS;
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
S3L_FastLerpState lDepthFLS, rDepthFLS;
|
|
|
|
#define initDepthFLS(s,p1,p2)\
|
|
s##DepthFLS.valueScaled = p1##PointPP->z << S3L_FAST_LERP_QUALITY;\
|
|
s##DepthFLS.stepScaled = ((p2##PointPP->z << S3L_FAST_LERP_QUALITY) -\
|
|
s##DepthFLS.valueScaled) / (s##Dy != 0 ? s##Dy : 1);
|
|
#else
|
|
#define initDepthFLS(s,p1,p2) ;
|
|
#endif
|
|
|
|
/* init side for the algorithm, params:
|
|
s - which side (l or r)
|
|
p1 - point from (t, l or r)
|
|
p2 - point to (t, l or r)
|
|
down - whether the side coordinate goes top-down or vice versa */
|
|
#define initSide(s,p1,p2,down)\
|
|
s##X = p1##PointSx;\
|
|
s##Dx = p2##PointSx - p1##PointSx;\
|
|
s##Dy = p2##PointSy - p1##PointSy;\
|
|
initDepthFLS(s,p1,p2)\
|
|
s##SideFLS.stepScaled = (S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY)\
|
|
/ (s##Dy != 0 ? s##Dy : 1);\
|
|
s##SideFLS.valueScaled = 0;\
|
|
if (!down)\
|
|
{\
|
|
s##SideFLS.valueScaled = S3L_FRACTIONS_PER_UNIT << S3L_FAST_LERP_QUALITY;\
|
|
s##SideFLS.stepScaled *= -1;\
|
|
}\
|
|
s##Inc = s##Dx >= 0 ? 1 : -1;\
|
|
if (s##Dx < 0)\
|
|
{s##Err = 0; s##ErrCmp = 0;}\
|
|
else\
|
|
{s##Err = s##Dy; s##ErrCmp = 1;}\
|
|
s##ErrAdd = S3L_abs(s##Dx);\
|
|
s##ErrSub = s##Dy != 0 ? s##Dy : 1; /* don't allow 0, could lead to an
|
|
infinite substracting loop */
|
|
|
|
#define stepSide(s)\
|
|
while (s##Err - s##Dy >= s##ErrCmp)\
|
|
{\
|
|
s##X += s##Inc;\
|
|
s##Err -= s##ErrSub;\
|
|
}\
|
|
s##Err += s##ErrAdd;
|
|
|
|
initSide(r,t,r,1)
|
|
initSide(l,t,l,1)
|
|
|
|
#define initPC(f,t,pc)\
|
|
S3L_initPerspectiveCorrectionState(\
|
|
f##PointPP->x,\
|
|
f##PointPP->y,\
|
|
f##PointPP->z,\
|
|
t##PointPP->x,\
|
|
t##PointPP->y,\
|
|
t##PointPP->z,\
|
|
camera->focalLength,\
|
|
&pc##PC);
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
S3L_PerspectiveCorrectionState lPC, rPC, rowPC;
|
|
|
|
initPC(t,l,l)
|
|
initPC(t,r,r)
|
|
#endif
|
|
|
|
// clip to the screen in y dimension:
|
|
|
|
endY = S3L_min(endY,S3L_RESOLUTION_Y);
|
|
|
|
/* Clipping above the screen (y < 0) can't be easily done here, will be
|
|
handled inside the loop. */
|
|
|
|
while (currentY < endY) /* draw the triangle from top to bottom -- the
|
|
bottom-most row is left out because, following
|
|
from the rasterization rules (see top of the
|
|
source), it is to never be rasterized. */
|
|
{
|
|
if (currentY == splitY) // reached a vertical split of the triangle?
|
|
{
|
|
#define manageSplit(b0,b1,s)\
|
|
S3L_Unit *tmp = barycentric##b0;\
|
|
barycentric##b0 = barycentric##b1;\
|
|
barycentric##b1 = tmp;\
|
|
s##SideFLS.valueScaled = (S3L_FRACTIONS_PER_UNIT\
|
|
<< S3L_FAST_LERP_QUALITY) - s##SideFLS.valueScaled;\
|
|
s##SideFLS.stepScaled *= -1;
|
|
|
|
if (splitOnLeft)
|
|
{
|
|
initSide(l,l,r,0);
|
|
manageSplit(0,2,r)
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
initPC(r,l,l)
|
|
initPC(r,t,r)
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
initSide(r,r,l,0);
|
|
manageSplit(1,2,l)
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
initPC(l,r,r)
|
|
initPC(l,t,l)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
stepSide(r)
|
|
stepSide(l)
|
|
|
|
if (currentY >= 0) /* clipping of pixels whose y < 0 (can't be easily done
|
|
outside the loop) */
|
|
{ /* TODO: ^ This is bad though, a single large
|
|
triangle outside he top of the screen will trigger
|
|
a long loop. Try to FIX THIS! */
|
|
p->y = currentY;
|
|
|
|
// draw the horizontal line
|
|
|
|
S3L_Unit rowLength = S3L_nonZero(rX - lX - 1); // prevent zero div
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
S3L_Unit
|
|
lDepth, rDepth,
|
|
lT, rT; // perspective-corrected position along either side
|
|
|
|
lT = S3L_correctPerspective(S3L_getFastLerpValue(lSideFLS),&lPC);
|
|
rT = S3L_correctPerspective(S3L_getFastLerpValue(rSideFLS),&rPC);
|
|
|
|
lDepth = S3L_interpolateByUnit(lPC.a[2],lPC.b[2],lT);
|
|
rDepth = S3L_interpolateByUnit(rPC.a[2],rPC.b[2],rT);
|
|
|
|
S3L_initPerspectiveCorrectionState(
|
|
S3L_interpolateByUnit(lPC.a[0],lPC.b[0],lT),
|
|
S3L_interpolateByUnit(lPC.a[1],lPC.b[1],lT),
|
|
lDepth,
|
|
S3L_interpolateByUnit(rPC.a[0],rPC.b[0],rT),
|
|
S3L_interpolateByUnit(rPC.a[1],rPC.b[1],rT),
|
|
rDepth,
|
|
camera->focalLength,
|
|
&rowPC
|
|
);
|
|
#else
|
|
S3L_FastLerpState b0FLS, b1FLS;
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
S3L_FastLerpState depthFLS;
|
|
|
|
depthFLS.valueScaled = lDepthFLS.valueScaled;
|
|
depthFLS.stepScaled =
|
|
(rDepthFLS.valueScaled - lDepthFLS.valueScaled) / rowLength;
|
|
#endif
|
|
|
|
b0FLS.valueScaled = 0;
|
|
b1FLS.valueScaled = lSideFLS.valueScaled;
|
|
|
|
b0FLS.stepScaled = rSideFLS.valueScaled / rowLength;
|
|
b1FLS.stepScaled = -1 * lSideFLS.valueScaled / rowLength;
|
|
#endif
|
|
|
|
// clip to the screen in x dimension:
|
|
|
|
S3L_ScreenCoord rXClipped = S3L_min(rX,S3L_RESOLUTION_X),
|
|
lXClipped = lX;
|
|
|
|
if (lXClipped < 0)
|
|
{
|
|
lXClipped = 0;
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION != 1
|
|
b0FLS.valueScaled -= lX * b0FLS.stepScaled;
|
|
b1FLS.valueScaled -= lX * b1FLS.stepScaled;
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
depthFLS.valueScaled -= lX * depthFLS.stepScaled;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// draw the row:
|
|
|
|
for (S3L_ScreenCoord x = lXClipped; x < rXClipped; ++x)
|
|
{
|
|
#if S3L_STENCIL_BUFFER
|
|
if (!S3L_stencilTest(x,p->y))
|
|
continue;
|
|
#endif
|
|
p->x = x;
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
S3L_Unit rowT =
|
|
S3L_correctPerspective(S3L_interpolateFrom0(S3L_FRACTIONS_PER_UNIT,
|
|
x - lX,rowLength),&rowPC);
|
|
#endif
|
|
|
|
#if S3L_COMPUTE_DEPTH
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
p->depth = S3L_interpolateByUnit(lDepth,rDepth,rowT);
|
|
#else
|
|
p->depth = S3L_getFastLerpValue(depthFLS);
|
|
S3L_stepFastLerp(depthFLS);
|
|
#endif
|
|
#endif
|
|
|
|
#if S3L_Z_BUFFER
|
|
if (!S3L_zTest(p->x,p->y,p->depth))
|
|
continue;
|
|
#endif
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
*barycentric0 =
|
|
S3L_interpolateByUnitFrom0(rT,rowT);
|
|
|
|
*barycentric1 =
|
|
S3L_interpolateByUnitFrom0(lT,S3L_FRACTIONS_PER_UNIT - rowT);
|
|
#else
|
|
*barycentric0 = S3L_getFastLerpValue(b0FLS);
|
|
*barycentric1 = S3L_getFastLerpValue(b1FLS);
|
|
|
|
S3L_stepFastLerp(b0FLS);
|
|
S3L_stepFastLerp(b1FLS);
|
|
#endif
|
|
|
|
*barycentric2 = S3L_FRACTIONS_PER_UNIT - *barycentric0 - *barycentric1;
|
|
|
|
S3L_PIXEL_FUNCTION(p);
|
|
}
|
|
} // y clipping
|
|
|
|
S3L_stepFastLerp(lSideFLS);
|
|
S3L_stepFastLerp(rSideFLS);
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
S3L_stepFastLerp(lDepthFLS);
|
|
S3L_stepFastLerp(rDepthFLS);
|
|
#endif
|
|
|
|
++currentY;
|
|
}
|
|
|
|
#undef manageSplit
|
|
#undef initPC
|
|
#undef initSide
|
|
#undef stepSide
|
|
}
|
|
|
|
void S3L_drawTriangle(
|
|
S3L_Vec4 point0,
|
|
S3L_Vec4 point1,
|
|
S3L_Vec4 point2,
|
|
const S3L_DrawConfig *config,
|
|
const S3L_Camera *camera,
|
|
S3L_Index modelID,
|
|
S3L_Index triangleID)
|
|
{
|
|
S3L_PixelInfo p;
|
|
S3L_initPixelInfo(&p);
|
|
p.modelID = modelID;
|
|
p.triangleID = triangleID;
|
|
|
|
if (config->mode == S3L_MODE_TRIANGLES) // triangle mode
|
|
{
|
|
/* This function will perform the mapping to screen space itself, it needs
|
|
the original values, hence no conversion here. */
|
|
_S3L_drawFilledTriangle(point0,point1,point2,camera,&p);
|
|
return;
|
|
}
|
|
|
|
// map to screen space
|
|
|
|
S3L_ScreenCoord x0, y0, x1, y1, x2, y2;
|
|
|
|
S3L_mapProjectionPlaneToScreen(point0,&x0,&y0);
|
|
S3L_mapProjectionPlaneToScreen(point1,&x1,&y1);
|
|
S3L_mapProjectionPlaneToScreen(point2,&x2,&y2);
|
|
|
|
if (config->mode == S3L_MODE_LINES) // line mode
|
|
{
|
|
S3L_BresenhamState line;
|
|
S3L_Unit lineLen;
|
|
|
|
#define drawLine(p1,p2)\
|
|
S3L_bresenhamInit(&line,x##p1,y##p1,x##p2,y##p2);\
|
|
p.barycentric0 = 0;\
|
|
p.barycentric1 = 0;\
|
|
p.barycentric2 = 0;\
|
|
lineLen = S3L_nonZero(line.steps);\
|
|
do\
|
|
{\
|
|
if (line.x >= 0 && line.x < S3L_RESOLUTION_X &&\
|
|
line.y >= 0 && line.y < S3L_RESOLUTION_Y)\
|
|
{\
|
|
p.x = line.x; p.y = line.y;\
|
|
p.barycentric##p1 = S3L_interpolateFrom0(\
|
|
S3L_FRACTIONS_PER_UNIT,line.steps,lineLen); \
|
|
p.barycentric##p2 = S3L_FRACTIONS_PER_UNIT - p.barycentric##p1;\
|
|
S3L_PIXEL_FUNCTION(&p);\
|
|
}\
|
|
} while (S3L_bresenhamStep(&line));
|
|
|
|
drawLine(0,1)
|
|
drawLine(2,0)
|
|
drawLine(1,2)
|
|
|
|
#undef drawLine
|
|
}
|
|
else // point mode
|
|
{
|
|
if (x0 >= 0 && x0 < S3L_RESOLUTION_X && y0 >= 0 && y0 < S3L_RESOLUTION_Y)
|
|
{
|
|
p.x = x0; p.y = y0; p.barycentric0 = S3L_FRACTIONS_PER_UNIT;
|
|
p.barycentric1 = 0; p.barycentric2 = 0;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
}
|
|
|
|
if (x1 >= 0 && x1 < S3L_RESOLUTION_X && y1 >= 0 && y1 < S3L_RESOLUTION_Y)
|
|
{
|
|
p.x = x1; p.y = y1; p.barycentric0 = 0;
|
|
p.barycentric1 = S3L_FRACTIONS_PER_UNIT; p.barycentric2 = 0;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
}
|
|
|
|
if (x2 >= 0 && x2 < S3L_RESOLUTION_X && y2 >= 0 && y2 < S3L_RESOLUTION_Y)
|
|
{
|
|
p.x = x2; p.y = y2; p.barycentric0 = 0;
|
|
p.barycentric1 = 0; p.barycentric2 = S3L_FRACTIONS_PER_UNIT;
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
}
|
|
}
|
|
}
|
|
|
|
void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle)
|
|
{
|
|
if (angle < S3L_SIN_TABLE_UNIT_STEP)
|
|
return; // no visible rotation
|
|
|
|
S3L_Unit angleSin = S3L_sin(angle);
|
|
S3L_Unit angleCos = S3L_cos(angle);
|
|
|
|
S3L_Unit xBackup = *x;
|
|
|
|
*x =
|
|
(angleCos * (*x)) / S3L_FRACTIONS_PER_UNIT -
|
|
(angleSin * (*y)) / S3L_FRACTIONS_PER_UNIT;
|
|
|
|
*y =
|
|
(angleSin * xBackup) / S3L_FRACTIONS_PER_UNIT +
|
|
(angleCos * (*y)) / S3L_FRACTIONS_PER_UNIT;
|
|
}
|
|
|
|
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 *m)
|
|
{
|
|
S3L_makeScaleMatrix(
|
|
worldTransform.scale.x,
|
|
worldTransform.scale.y,
|
|
worldTransform.scale.z,
|
|
m
|
|
);
|
|
|
|
S3L_Mat4 t;
|
|
|
|
S3L_makeRotationMatrixZXY(
|
|
worldTransform.rotation.x,
|
|
worldTransform.rotation.y,
|
|
worldTransform.rotation.z,
|
|
&t);
|
|
|
|
S3L_mat4Xmat4(m,&t);
|
|
|
|
S3L_makeTranslationMat(
|
|
worldTransform.translation.x,
|
|
worldTransform.translation.y,
|
|
worldTransform.translation.z,
|
|
&t);
|
|
|
|
S3L_mat4Xmat4(m,&t);
|
|
}
|
|
|
|
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 *m)
|
|
{
|
|
S3L_makeTranslationMat(
|
|
-1 * cameraTransform.translation.x,
|
|
-1 * cameraTransform.translation.y,
|
|
-1 * cameraTransform.translation.z,
|
|
m);
|
|
|
|
S3L_Mat4 r;
|
|
|
|
S3L_makeRotationMatrixYXZ(
|
|
cameraTransform.rotation.x,
|
|
cameraTransform.rotation.y,
|
|
cameraTransform.rotation.z,
|
|
&r);
|
|
|
|
S3L_mat4Xmat4(m,&r);
|
|
}
|
|
|
|
static inline void S3L_perspectiveDivide(S3L_Vec4 *vector,
|
|
S3L_Unit focalLength)
|
|
{
|
|
S3L_Unit divisor = vector->z > 0 ? vector->z : (-1 * (vector->z - 1));
|
|
/* ^ This has two purposes:
|
|
|
|
1. Prevent division by zero.
|
|
2. Prevent a "rapid flip" of the vertex, e.g.: having a vertex
|
|
[100,0,0.1] z-divides it to [1000,0], but when it shift a short
|
|
distance to [100,0,-0.1], it z-divides to [-1000,0], rapidly flipping
|
|
from right to the left. */
|
|
|
|
vector->x = (vector->x * focalLength) / divisor;
|
|
vector->y = (vector->y * focalLength) / divisor;
|
|
}
|
|
|
|
/**
|
|
Checks if given triangle (in Projection Plane space) is at least partially
|
|
visible, i.e. returns false if the triangle is either completely outside
|
|
the frustum (left, right, top, bottom, near) or is invisible due to
|
|
backface culling.
|
|
*/
|
|
static inline int8_t S3L_triangleIsVisible(
|
|
S3L_Vec4 p0,
|
|
S3L_Vec4 p1,
|
|
S3L_Vec4 p2,
|
|
uint8_t backfaceCulling)
|
|
{
|
|
#define clipTest(c,cmp,v)\
|
|
(p0.c cmp (v) && p1.c cmp (v) && p2.c cmp (v))
|
|
|
|
if ( // completely outside frustum?
|
|
clipTest(z,<=,S3L_NEAR) ||
|
|
clipTest(x,<,-1 * S3L_FRACTIONS_PER_UNIT) ||
|
|
clipTest(x,>,S3L_FRACTIONS_PER_UNIT) ||
|
|
clipTest(y,<,-1 * S3L_PROJECTION_PLANE_HEIGHT / 2) ||
|
|
clipTest(y,>,S3L_PROJECTION_PLANE_HEIGHT / 2)
|
|
)
|
|
return 0;
|
|
|
|
#undef clipTest
|
|
|
|
if (backfaceCulling != S3L_BACKFACE_CULLING_NONE)
|
|
{
|
|
int32_t winding = // determines CW or CCW
|
|
(p1.y - p0.y) * (p2.x - p1.x) - (p1.x - p0.x) * (p2.y - p1.y);
|
|
|
|
if ((backfaceCulling == S3L_BACKFACE_CULLING_CW && winding < 0) ||
|
|
(backfaceCulling == S3L_BACKFACE_CULLING_CCW && winding >= 0))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#if S3L_SORT != S3L_SORT_NONE
|
|
typedef struct
|
|
{
|
|
uint8_t modelIndex;
|
|
S3L_Index triangleIndex;
|
|
uint16_t sortValue;
|
|
} S3L_TriangleToSort;
|
|
|
|
S3L_TriangleToSort S3L_sortArray[S3L_MAX_TRIANGES_DRAWN];
|
|
uint16_t S3L_sortArrayLength;
|
|
#endif
|
|
|
|
void _S3L_projectVertex(
|
|
const S3L_Model3D *model,
|
|
S3L_Index triangleIndex,
|
|
uint8_t vertex,
|
|
S3L_Mat4 *projectionMatrix,
|
|
S3L_Vec4 *result,
|
|
S3L_Unit focalLength)
|
|
{
|
|
S3L_Index vertexIndex = model->triangles[triangleIndex * 3 + vertex] * 3;
|
|
|
|
result->x = model->vertices[vertexIndex];
|
|
result->y = model->vertices[vertexIndex + 1];
|
|
result->z = model->vertices[vertexIndex + 2];
|
|
result->w = S3L_FRACTIONS_PER_UNIT; // for translation
|
|
|
|
S3L_vec3Xmat4(result,projectionMatrix);
|
|
|
|
S3L_perspectiveDivide(result,focalLength);
|
|
}
|
|
|
|
void S3L_drawScene(S3L_Scene scene)
|
|
{
|
|
S3L_Mat4 matFinal, matCamera;
|
|
S3L_Vec4 transformed0, transformed1, transformed2;
|
|
const S3L_Model3D *model;
|
|
S3L_Index modelIndex, triangleIndex;
|
|
|
|
S3L_makeCameraMatrix(scene.camera.transform,&matCamera);
|
|
|
|
#if S3L_SORT != S3L_SORT_NONE
|
|
uint16_t previousModel = 0;
|
|
S3L_sortArrayLength = 0;
|
|
#endif
|
|
|
|
for (modelIndex = 0; modelIndex < scene.modelCount; ++modelIndex)
|
|
{
|
|
S3L_makeWorldMatrix(scene.models[modelIndex].transform,&matFinal);
|
|
S3L_mat4Xmat4(&matFinal,&matCamera);
|
|
|
|
S3L_Index triangleCount = scene.models[modelIndex].triangleCount;
|
|
|
|
triangleIndex = 0;
|
|
|
|
#if S3L_SORT != S3L_SORT_NONE
|
|
previousModel = modelIndex;
|
|
#endif
|
|
|
|
while (triangleIndex < triangleCount)
|
|
{
|
|
model = &(scene.models[modelIndex]);
|
|
|
|
/* TODO: maybe create an option that would use a cache here to not
|
|
transform the same point twice? */
|
|
|
|
_S3L_projectVertex(model,triangleIndex,0,&matFinal,
|
|
&transformed0,scene.camera.focalLength);
|
|
|
|
_S3L_projectVertex(model,triangleIndex,1,&matFinal,
|
|
&transformed1,scene.camera.focalLength);
|
|
|
|
_S3L_projectVertex(model,triangleIndex,2,&matFinal,
|
|
&transformed2,scene.camera.focalLength);
|
|
|
|
if (S3L_triangleIsVisible(transformed0,transformed1,transformed2,
|
|
model->config.backfaceCulling))
|
|
{
|
|
#if S3L_SORT == S3L_SORT_NONE
|
|
// without sorting draw right away
|
|
S3L_drawTriangle(transformed0,transformed1,transformed2,
|
|
&(model->config),&(scene.camera),modelIndex,triangleIndex);
|
|
#else
|
|
// with sorting add to a sort list
|
|
S3L_sortArray[S3L_sortArrayLength].modelIndex = modelIndex;
|
|
S3L_sortArray[S3L_sortArrayLength].triangleIndex = triangleIndex;
|
|
S3L_sortArray[S3L_sortArrayLength].sortValue =
|
|
(transformed0.z + transformed1.z + transformed2.z) >> 2;
|
|
/* ^ As a simple approximation we sort by the triangle center point,
|
|
which is a mean coordinate -- we don't actually have to divide by 3
|
|
(or anything), that is unnecessary for sorting! We shift by 2 just
|
|
as a fast operation to prevent overflow of the sum ver uint_16t. */
|
|
|
|
S3L_sortArrayLength++;
|
|
#endif
|
|
}
|
|
++triangleIndex;
|
|
}
|
|
}
|
|
|
|
#if S3L_SORT != S3L_SORT_NONE
|
|
|
|
#if S3L_SORT == S3L_SORT_BACK_TO_FRONT
|
|
#define cmp <
|
|
#else
|
|
#define cmp >
|
|
#endif
|
|
|
|
/* Sort the triangles. We use insertion sort, because it has many advantages,
|
|
especially for smaller arrays (better than bubble sort, in-place, stable,
|
|
simple, ...). */
|
|
|
|
for (int16_t i = 1; i < S3L_sortArrayLength; ++i)
|
|
{
|
|
S3L_TriangleToSort tmp = S3L_sortArray[i];
|
|
|
|
int16_t j = i - 1;
|
|
|
|
while (j >= 0 && S3L_sortArray[j].sortValue cmp tmp.sortValue)
|
|
{
|
|
S3L_sortArray[j + 1] = S3L_sortArray[j];
|
|
j--;
|
|
}
|
|
|
|
S3L_sortArray[j + 1] = tmp;
|
|
}
|
|
|
|
#undef cmp
|
|
|
|
for (S3L_Index i = 0; i < S3L_sortArrayLength; ++i)
|
|
{
|
|
modelIndex = S3L_sortArray[i].modelIndex;
|
|
triangleIndex = S3L_sortArray[i].triangleIndex;
|
|
|
|
model = &(scene.models[modelIndex]);
|
|
|
|
if (modelIndex != previousModel)
|
|
{
|
|
// only recompute the matrix when the model has changed
|
|
S3L_makeWorldMatrix(model->transform,&matFinal);
|
|
S3L_mat4Xmat4(&matFinal,&matCamera);
|
|
previousModel = modelIndex;
|
|
}
|
|
|
|
/* Here we project the points again, which is redundant and slow as they've
|
|
already been projected above, but saving the projected points would
|
|
require a lot of memory, which for small resolutions could be even
|
|
worse than z-bufer. So this seems to be the best way memory-wise. */
|
|
|
|
_S3L_projectVertex(model,triangleIndex,0,&matFinal,
|
|
&transformed0,scene.camera.focalLength);
|
|
|
|
_S3L_projectVertex(model,triangleIndex,1,&matFinal,
|
|
&transformed1,scene.camera.focalLength);
|
|
|
|
_S3L_projectVertex(model,triangleIndex,2,&matFinal,
|
|
&transformed2,scene.camera.focalLength);
|
|
|
|
S3L_drawTriangle(transformed0,transformed1,transformed2,
|
|
&(model->config),&(scene.camera),modelIndex,triangleIndex);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif
|