mirror of
https://git.coom.tech/drummyfish/small3dlib.git
synced 2024-11-22 20:49:58 +01:00
3007 lines
83 KiB
C
3007 lines
83 KiB
C
#ifndef SMALL3DLIB_H
|
|
#define SMALL3DLIB_H
|
|
|
|
/*
|
|
Simple realtime 3D software rasterization renderer. It is fast, focused on
|
|
resource-limited computers, located in a single C header file, with no
|
|
dependencies, using only 32bit integer arithmetics.
|
|
|
|
author: Miloslav Ciz
|
|
license: CC0 1.0 (public domain)
|
|
found at https://creativecommons.org/publicdomain/zero/1.0/
|
|
+ additional waiver of all IP
|
|
version: 0.904d
|
|
|
|
Before including the library, define S3L_PIXEL_FUNCTION to the name of the
|
|
function you'll be using to draw single pixels (this function will be called
|
|
by the library to render the frames). Also either init S3L_resolutionX and
|
|
S3L_resolutionY or define S3L_RESOLUTION_X and S3L_RESOLUTION_Y.
|
|
|
|
You'll also need to decide what rendering strategy and other settings you
|
|
want to use, depending on your specific usecase. You may want to use a
|
|
z-buffer (full or reduced, S3L_Z_BUFFER), sorted-drawing (S3L_SORT), or even
|
|
none of these. See the description of the options in this file.
|
|
|
|
The rendering itself is done with S3L_drawScene, usually preceded by
|
|
S3L_newFrame (for clearing zBuffer etc.).
|
|
|
|
The library is meant to be used in not so huge programs that use single
|
|
translation unit and so includes both declarations and implementation at once.
|
|
If you for some reason use multiple translation units (which include the
|
|
library), you'll have to handle this yourself (e.g. create a wrapper, manually
|
|
split the library into .c and .h etc.).
|
|
|
|
--------------------
|
|
|
|
This work's goal is to never be encumbered by any exclusive intellectual
|
|
property rights. The work is therefore provided under CC0 1.0 + additional
|
|
WAIVER OF ALL INTELLECTUAL PROPERTY RIGHTS that waives the rest of
|
|
intellectual property rights not already waived by CC0 1.0. The WAIVER OF ALL
|
|
INTELLECTUAL PROPERTY RGHTS is as follows:
|
|
|
|
Each contributor to this work agrees that they waive any exclusive rights,
|
|
including but not limited to copyright, patents, trademark, trade dress,
|
|
industrial design, plant varieties and trade secrets, to any and all ideas,
|
|
concepts, processes, discoveries, improvements and inventions conceived,
|
|
discovered, made, designed, researched or developed by the contributor either
|
|
solely or jointly with others, which relate to this work or result from this
|
|
work. Should any waiver of such right be judged legally invalid or
|
|
ineffective under applicable law, the contributor hereby grants to each
|
|
affected person a royalty-free, non transferable, non sublicensable, non
|
|
exclusive, irrevocable and unconditional license to this right.
|
|
|
|
--------------------
|
|
|
|
CONVENTIONS:
|
|
|
|
This library should never draw pixels outside the specified screen
|
|
boundaries, so you don't have to check this (that would cost CPU time)!
|
|
|
|
You can safely assume that triangles are rasterized one by one and from top
|
|
down, left to right (so you can utilize e.g. various caches), and if sorting
|
|
is disabled the order of rasterization will be that specified in the scene
|
|
structure and model arrays (of course, some triangles and models may be
|
|
skipped due to culling etc.).
|
|
|
|
Angles are in S3L_Units, a full angle (2 pi) is S3L_FRACTIONS_PER_UNITs.
|
|
|
|
We use row vectors.
|
|
|
|
In 3D space, a left-handed coord. system is used. One spatial unit is split
|
|
into S3L_FRACTIONS_PER_UNITs fractions (fixed point arithmetic).
|
|
|
|
y ^
|
|
| _
|
|
| /| z
|
|
| /
|
|
| /
|
|
[0,0,0]-------> x
|
|
|
|
Untransformed camera is placed at [0,0,0], looking forward along +z axis. The
|
|
projection plane is centered at [0,0,0], stretrinch from
|
|
-S3L_FRACTIONS_PER_UNIT to S3L_FRACTIONS_PER_UNIT horizontally (x),
|
|
vertical size (y) depends on the aspect ratio (S3L_RESOLUTION_X and
|
|
S3L_RESOLUTION_Y). Camera FOV is defined by focal length in S3L_Units.
|
|
|
|
Rotations use Euler angles and are generally in the extrinsic Euler angles in
|
|
ZXY order (by Z, then by X, then by Y). Positive rotation about an axis
|
|
rotates CW (clock-wise) when looking in the direction of the axis.
|
|
|
|
Coordinates of pixels on the screen start at the top left, from [0,0].
|
|
|
|
There is NO subpixel accuracy (screen coordinates are only integer).
|
|
|
|
Triangle rasterization rules are these (mostly same as OpenGL, D3D etc.):
|
|
|
|
- Let's define:
|
|
- left side:
|
|
- not exactly horizontal, and on the left side of triangle
|
|
- exactly horizontal and above the topmost
|
|
(in other words: its normal points at least a little to the left or
|
|
completely up)
|
|
- right side: not left side
|
|
- Pixel centers are at integer coordinates and triangle for drawing are
|
|
specified with integer coordinates of pixel centers.
|
|
- A pixel is rasterized:
|
|
- if its center is inside the triangle OR
|
|
- if its center is exactly on the triangle side which is left and at the
|
|
same time is not on the side that's right (case of a triangle that's on
|
|
a single line) OR
|
|
- if its center is exactly on the triangle corner of sides neither of which
|
|
is right.
|
|
|
|
These rules imply among others:
|
|
|
|
- Adjacent triangles don't have any overlapping pixels, nor gaps between.
|
|
- Triangles of points that lie on a single line are NOT rasterized.
|
|
- A single "long" triangle CAN be rasterized as isolated islands of pixels.
|
|
- Transforming (e.g. mirroring, rotating by 90 degrees etc.) a result of
|
|
rasterizing triangle A is NOT generally equal to applying the same
|
|
transformation to triangle A first and then rasterizing it. Even the number
|
|
of rasterized pixels is usually different.
|
|
- If specifying a triangle with integer coordinates (which we are), then:
|
|
- The bottom-most corner (or side) of a triangle is never rasterized
|
|
(because it is connected to a right side).
|
|
- The top-most corner can only be rasterized on completely horizontal side
|
|
(otherwise it is connected to a right side).
|
|
- Vertically middle corner is rasterized if and only if it is on the left
|
|
of the triangle and at the same time is also not the bottom-most corner.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#ifdef S3L_RESOLUTION_X
|
|
#ifdef S3L_RESOLUTION_Y
|
|
#define S3L_MAX_PIXELS (S3L_RESOLUTION_X * S3L_RESOLUTION_Y)
|
|
#endif
|
|
#endif
|
|
|
|
#ifndef S3L_RESOLUTION_X
|
|
#ifndef S3L_MAX_PIXELS
|
|
#error Dynamic resolution set (S3L_RESOLUTION_X not defined), but\
|
|
S3L_MAX_PIXELS not defined!
|
|
#endif
|
|
|
|
uint16_t S3L_resolutionX = 512; /**< If a static resolution is not set with
|
|
S3L_RESOLUTION_X, this variable can be
|
|
used to change X resolution at runtime,
|
|
in which case S3L_MAX_PIXELS has to be
|
|
defined (to allocate zBuffer etc.)! */
|
|
#define S3L_RESOLUTION_X S3L_resolutionX
|
|
#endif
|
|
|
|
#ifndef S3L_RESOLUTION_Y
|
|
#ifndef S3L_MAX_PIXELS
|
|
#error Dynamic resolution set (S3L_RESOLUTION_Y not defined), but\
|
|
S3L_MAX_PIXELS not defined!
|
|
#endif
|
|
|
|
uint16_t S3L_resolutionY = 512; /**< Same as S3L_resolutionX, but for Y
|
|
resolution. */
|
|
#define S3L_RESOLUTION_Y S3L_resolutionY
|
|
#endif
|
|
|
|
#ifndef S3L_USE_WIDER_TYPES
|
|
/** If true, the library will use wider data types which will largely supress
|
|
many rendering bugs and imprecisions happening due to overflows, but this will
|
|
also consumer more RAM and may potentially be slower on computers with smaller
|
|
native integer. */
|
|
|
|
#define S3L_USE_WIDER_TYPES 0
|
|
#endif
|
|
|
|
#ifndef S3L_SIN_METHOD
|
|
/** Says which method should be used for computing sin/cos functions, possible
|
|
values: 0 (lookup table, takes more program memory), 1 (Bhaskara's
|
|
approximation, slower). This may cause the trigonometric functions give
|
|
slightly different results. */
|
|
#define S3L_SIN_METHOD 0
|
|
#endif
|
|
|
|
/** Units of measurement in 3D space. There is S3L_FRACTIONS_PER_UNIT in one
|
|
spatial unit. By dividing the unit into fractions we effectively achieve a
|
|
fixed point arithmetic. The number of fractions is a constant that serves as
|
|
1.0 in floating point arithmetic (normalization etc.). */
|
|
|
|
typedef
|
|
#if S3L_USE_WIDER_TYPES
|
|
int64_t
|
|
#else
|
|
int32_t
|
|
#endif
|
|
S3L_Unit;
|
|
|
|
/** How many fractions a spatial unit is split into, i.e. this is the fixed
|
|
point scaling. This is NOT SUPPOSED TO BE REDEFINED, so rather don't do it
|
|
(otherwise things may overflow etc.). */
|
|
#define S3L_FRACTIONS_PER_UNIT 512
|
|
#define S3L_F S3L_FRACTIONS_PER_UNIT
|
|
|
|
typedef
|
|
#if S3L_USE_WIDER_TYPES
|
|
int32_t
|
|
#else
|
|
int16_t
|
|
#endif
|
|
S3L_ScreenCoord;
|
|
|
|
typedef
|
|
#if S3L_USE_WIDER_TYPES
|
|
uint32_t
|
|
#else
|
|
uint16_t
|
|
#endif
|
|
S3L_Index;
|
|
|
|
#ifndef S3L_NEAR_CROSS_STRATEGY
|
|
/** Specifies how the library will handle triangles that partially cross the
|
|
near plane. These are problematic and require special handling. Possible
|
|
values:
|
|
|
|
0: Strictly cull any triangle crossing the near plane. This will make such
|
|
triangles disappear. This is good for performance or models viewed only
|
|
from at least small distance.
|
|
1: Forcefully push the vertices crossing near plane in front of it. This is
|
|
a cheap technique that can be good enough for displaying simple
|
|
environments on slow devices, but texturing and geometric artifacts/warps
|
|
will appear.
|
|
2: Geometrically correct the triangles crossing the near plane. This may
|
|
result in some triangles being subdivided into two and is a little more
|
|
expensive, but the results will be geometrically correct, even though
|
|
barycentric correction is not performed so texturing artifacts will
|
|
appear. Can be ideal with S3L_FLAT.
|
|
3: Perform both geometrical and barycentric correction of triangle crossing
|
|
the near plane. This is significantly more expensive but results in
|
|
correct rendering. */
|
|
|
|
#define S3L_NEAR_CROSS_STRATEGY 0
|
|
#endif
|
|
|
|
#ifndef S3L_FLAT
|
|
/** If on, disables computation of per-pixel values such as barycentric
|
|
coordinates and depth -- these will still be available but will be the same
|
|
for the whole triangle. This can be used to create flat-shaded renders and
|
|
will be a lot faster. With this option on you will probably want to use
|
|
sorting instead of z-buffer. */
|
|
|
|
#define S3L_FLAT 0
|
|
#endif
|
|
|
|
#if S3L_FLAT
|
|
#define S3L_COMPUTE_DEPTH 0
|
|
#define S3L_PERSPECTIVE_CORRECTION 0
|
|
// don't disable z-buffer, it makes sense to use it with no sorting
|
|
#endif
|
|
|
|
#ifndef S3L_PERSPECTIVE_CORRECTION
|
|
/** Specifies what type of perspective correction (PC) to use. Remember this
|
|
is an expensive operation! Possible values:
|
|
|
|
0: No perspective correction. Fastest, inaccurate from most angles.
|
|
1: Per-pixel perspective correction, accurate but very expensive.
|
|
2: Approximation (computing only at every S3L_PC_APPROX_LENGTHth pixel).
|
|
Quake-style approximation is used, which only computes the PC after
|
|
S3L_PC_APPROX_LENGTH pixels. This is reasonably accurate and fast. */
|
|
|
|
#define S3L_PERSPECTIVE_CORRECTION 0
|
|
#endif
|
|
|
|
#ifndef S3L_PC_APPROX_LENGTH
|
|
/** For S3L_PERSPECTIVE_CORRECTION == 2, this specifies after how many pixels
|
|
PC is recomputed. Should be a power of two to keep up the performance.
|
|
Smaller is nicer but slower. */
|
|
|
|
#define S3L_PC_APPROX_LENGTH 32
|
|
#endif
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION
|
|
#define S3L_COMPUTE_DEPTH 1 // PC inevitably computes depth, so enable it
|
|
#endif
|
|
|
|
#ifndef S3L_COMPUTE_DEPTH
|
|
/** Whether to compute depth for each pixel (fragment). Some other options
|
|
may turn this on automatically. If you don't need depth information, turning
|
|
this off can save performance. Depth will still be accessible in
|
|
S3L_PixelInfo, but will be constant -- equal to center point depth -- over
|
|
the whole triangle. */
|
|
#define S3L_COMPUTE_DEPTH 1
|
|
#endif
|
|
|
|
#ifndef S3L_Z_BUFFER
|
|
/** What type of z-buffer (depth buffer) to use for visibility determination.
|
|
Possible values:
|
|
|
|
0: Don't use z-buffer. This saves a lot of memory, but visibility checking
|
|
won't be pixel-accurate and has to mostly be done by other means (typically
|
|
sorting).
|
|
1: Use full z-buffer (of S3L_Units) for visibiltiy determination. This is the
|
|
most accurate option (and also a fast one), but requires a big amount of
|
|
memory.
|
|
2: Use reduced-size z-buffer (of bytes). This is fast and somewhat accurate,
|
|
but inaccuracies can occur and a considerable amount of memory is
|
|
needed. */
|
|
|
|
#define S3L_Z_BUFFER 0
|
|
#endif
|
|
|
|
#ifndef S3L_REDUCED_Z_BUFFER_GRANULARITY
|
|
/** For S3L_Z_BUFFER == 2 this sets the reduced z-buffer granularity. */
|
|
|
|
#define S3L_REDUCED_Z_BUFFER_GRANULARITY 5
|
|
#endif
|
|
|
|
#ifndef S3L_STENCIL_BUFFER
|
|
/** Whether to use stencil buffer for drawing -- with this a pixel that would
|
|
be resterized over an already rasterized pixel (within a frame) will be
|
|
discarded. This is mostly for front-to-back sorted drawing. */
|
|
|
|
#define S3L_STENCIL_BUFFER 0
|
|
#endif
|
|
|
|
#ifndef S3L_SORT
|
|
/** Defines how to sort triangles before drawing a frame. This can be used to
|
|
solve visibility in case z-buffer is not used, to prevent overwriting already
|
|
rasterized pixels, implement transparency etc. Note that for simplicity and
|
|
performance a relatively simple sorting is used which doesn't work completely
|
|
correctly, so mistakes can occur (even the best sorting wouldn't be able to
|
|
solve e.g. intersecting triangles). Note that sorting requires a bit of extra
|
|
memory -- an array of the triangles to sort -- the size of this array limits
|
|
the maximum number of triangles that can be drawn in a single frame
|
|
(S3L_MAX_TRIANGES_DRAWN). Possible values:
|
|
|
|
0: Don't sort triangles. This is fastest and doesn't use extra memory.
|
|
1: Sort triangles from back to front. This can in most cases solve visibility
|
|
without requiring almost any extra memory compared to z-buffer.
|
|
2: Sort triangles from front to back. This can be faster than back to front
|
|
because we prevent computing pixels that will be overwritten by nearer
|
|
ones, but we need a 1b stencil buffer for this (enable S3L_STENCIL_BUFFER),
|
|
so a bit more memory is needed. */
|
|
|
|
#define S3L_SORT 0
|
|
#endif
|
|
|
|
#ifndef S3L_MAX_TRIANGES_DRAWN
|
|
/** Maximum number of triangles that can be drawn in sorted modes. This
|
|
affects the size of the cache used for triangle sorting. */
|
|
|
|
#define S3L_MAX_TRIANGES_DRAWN 128
|
|
#endif
|
|
|
|
#ifndef S3L_NEAR
|
|
/** Distance of the near clipping plane. Points in front or EXATLY ON this
|
|
plane are considered outside the frustum. This must be >= 0. */
|
|
|
|
#define S3L_NEAR (S3L_F / 4)
|
|
#endif
|
|
|
|
#if S3L_NEAR <= 0
|
|
#define S3L_NEAR 1 // Can't be <= 0.
|
|
#endif
|
|
|
|
#ifndef S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE
|
|
/** Affects the S3L_computeModelNormals function. See its description for
|
|
details. */
|
|
|
|
#define S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE 6
|
|
#endif
|
|
|
|
#ifndef S3L_FAST_LERP_QUALITY
|
|
/** Quality (scaling) of SOME (stepped) linear interpolations. 0 will most
|
|
likely be a tiny bit faster, but artifacts can occur for bigger tris, while
|
|
higher values can fix this -- in theory all higher values will have the same
|
|
speed (it is a shift value), but it mustn't be too high to prevent
|
|
overflow. */
|
|
|
|
#define S3L_FAST_LERP_QUALITY 11
|
|
#endif
|
|
|
|
/** Vector that consists of four scalars and can represent homogenous
|
|
coordinates, but is generally also used as Vec3 and Vec2 for various
|
|
purposes. */
|
|
typedef struct
|
|
{
|
|
S3L_Unit x;
|
|
S3L_Unit y;
|
|
S3L_Unit z;
|
|
S3L_Unit w;
|
|
} S3L_Vec4;
|
|
|
|
#define S3L_logVec4(v)\
|
|
printf("Vec4: %d %d %d %d\n",((v).x),((v).y),((v).z),((v).w))
|
|
|
|
static inline void S3L_vec4Init(S3L_Vec4 *v);
|
|
static inline void S3L_vec4Set(S3L_Vec4 *v, S3L_Unit x, S3L_Unit y,
|
|
S3L_Unit z, S3L_Unit w);
|
|
static inline void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added);
|
|
static inline void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted);
|
|
S3L_Unit S3L_vec3Length(S3L_Vec4 v);
|
|
|
|
/** Normalizes Vec3. Note that this function tries to normalize correctly
|
|
rather than quickly! If you need to normalize quickly, do it yourself in a
|
|
way that best fits your case. */
|
|
void S3L_vec3Normalize(S3L_Vec4 *v);
|
|
|
|
/** Like S3L_vec3Normalize, but doesn't perform any checks on the input vector,
|
|
which is faster, but can be very innacurate or overflowing. You are supposed
|
|
to provide a "nice" vector (not too big or small). */
|
|
static inline void S3L_vec3NormalizeFast(S3L_Vec4 *v);
|
|
|
|
S3L_Unit S3L_vec2Length(S3L_Vec4 v);
|
|
void S3L_vec3Cross(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4 *result);
|
|
static inline S3L_Unit S3L_vec3Dot(S3L_Vec4 a, S3L_Vec4 b);
|
|
|
|
/** Computes a reflection direction (typically used e.g. for specular component
|
|
in Phong illumination). The input vectors must be normalized. The result will
|
|
be normalized as well. */
|
|
void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4 *result);
|
|
|
|
/** Determines the winding of a triangle, returns 1 (CW, clockwise), -1 (CCW,
|
|
counterclockwise) or 0 (points lie on a single line). */
|
|
static inline int8_t S3L_triangleWinding(
|
|
S3L_ScreenCoord x0,
|
|
S3L_ScreenCoord y0,
|
|
S3L_ScreenCoord x1,
|
|
S3L_ScreenCoord y1,
|
|
S3L_ScreenCoord x2,
|
|
S3L_ScreenCoord y2);
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Vec4 translation;
|
|
S3L_Vec4 rotation; /**< Euler angles. Rortation is applied in this order:
|
|
1. z = by z (roll) CW looking along z+
|
|
2. x = by x (pitch) CW looking along x+
|
|
3. y = by y (yaw) CW looking along y+ */
|
|
S3L_Vec4 scale;
|
|
} S3L_Transform3D;
|
|
|
|
#define S3L_logTransform3D(t)\
|
|
printf("Transform3D: T = [%d %d %d], R = [%d %d %d], S = [%d %d %d]\n",\
|
|
(t).translation.x,(t).translation.y,(t).translation.z,\
|
|
(t).rotation.x,(t).rotation.y,(t).rotation.z,\
|
|
(t).scale.x,(t).scale.y,(t).scale.z)
|
|
|
|
static inline void S3L_transform3DInit(S3L_Transform3D *t);
|
|
|
|
void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D *t);
|
|
|
|
void S3L_transform3DSet(
|
|
S3L_Unit tx,
|
|
S3L_Unit ty,
|
|
S3L_Unit tz,
|
|
S3L_Unit rx,
|
|
S3L_Unit ry,
|
|
S3L_Unit rz,
|
|
S3L_Unit sx,
|
|
S3L_Unit sy,
|
|
S3L_Unit sz,
|
|
S3L_Transform3D *t);
|
|
|
|
/** Converts rotation transformation to three direction vectors of given length
|
|
(any one can be NULL, in which case it won't be computed). */
|
|
void S3L_rotationToDirections(
|
|
S3L_Vec4 rotation,
|
|
S3L_Unit length,
|
|
S3L_Vec4 *forw,
|
|
S3L_Vec4 *right,
|
|
S3L_Vec4 *up);
|
|
|
|
/** 4x4 matrix, used mostly for 3D transforms. The indexing is this:
|
|
matrix[column][row]. */
|
|
typedef S3L_Unit S3L_Mat4[4][4];
|
|
|
|
#define S3L_logMat4(m)\
|
|
printf("Mat4:\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n %d %d %d %d\n"\
|
|
,(m)[0][0],(m)[1][0],(m)[2][0],(m)[3][0],\
|
|
(m)[0][1],(m)[1][1],(m)[2][1],(m)[3][1],\
|
|
(m)[0][2],(m)[1][2],(m)[2][2],(m)[3][2],\
|
|
(m)[0][3],(m)[1][3],(m)[2][3],(m)[3][3])
|
|
|
|
/** Initializes a 4x4 matrix to identity. */
|
|
static inline void S3L_mat4Init(S3L_Mat4 m);
|
|
|
|
void S3L_mat4Copy(S3L_Mat4 src, S3L_Mat4 dst);
|
|
|
|
void S3L_mat4Transpose(S3L_Mat4 m);
|
|
|
|
void S3L_makeTranslationMat(
|
|
S3L_Unit offsetX,
|
|
S3L_Unit offsetY,
|
|
S3L_Unit offsetZ,
|
|
S3L_Mat4 m);
|
|
|
|
/** Makes a scaling matrix. DON'T FORGET: scale of 1.0 is set with
|
|
S3L_FRACTIONS_PER_UNIT! */
|
|
void S3L_makeScaleMatrix(
|
|
S3L_Unit scaleX,
|
|
S3L_Unit scaleY,
|
|
S3L_Unit scaleZ,
|
|
S3L_Mat4 m);
|
|
|
|
/** Makes a matrix for rotation in the ZXY order. */
|
|
void S3L_makeRotationMatrixZXY(
|
|
S3L_Unit byX,
|
|
S3L_Unit byY,
|
|
S3L_Unit byZ,
|
|
S3L_Mat4 m);
|
|
|
|
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m);
|
|
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m);
|
|
|
|
/** Multiplies a vector by a matrix with normalization by
|
|
S3L_FRACTIONS_PER_UNIT. Result is stored in the input vector. */
|
|
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
|
|
|
|
/** Same as S3L_vec4Xmat4 but faster, because this version doesn't compute the
|
|
W component of the result, which is usually not needed. */
|
|
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m);
|
|
|
|
/** Multiplies two matrices with normalization by S3L_FRACTIONS_PER_UNIT.
|
|
Result is stored in the first matrix. The result represents a transformation
|
|
that has the same effect as applying the transformation represented by m1 and
|
|
then m2 (in that order). */
|
|
void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2);
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Unit focalLength; ///< Defines the field of view (FOV).
|
|
S3L_Transform3D transform;
|
|
} S3L_Camera;
|
|
|
|
void S3L_cameraInit(S3L_Camera *camera);
|
|
|
|
typedef struct
|
|
{
|
|
uint8_t backfaceCulling; /**< What backface culling to use. Possible
|
|
values:
|
|
- 0 none
|
|
- 1 clock-wise
|
|
- 2 counter clock-wise */
|
|
int8_t visible; /**< Can be used to easily hide the model. */
|
|
} S3L_DrawConfig;
|
|
|
|
void S3L_drawConfigInit(S3L_DrawConfig *config);
|
|
|
|
typedef struct
|
|
{
|
|
const S3L_Unit *vertices;
|
|
S3L_Index vertexCount;
|
|
const S3L_Index *triangles;
|
|
S3L_Index triangleCount;
|
|
S3L_Transform3D transform;
|
|
S3L_Mat4 *customTransformMatrix; /**< This can be used to override the
|
|
transform (if != 0) with a custom
|
|
transform matrix, which is more
|
|
general. */
|
|
S3L_DrawConfig config;
|
|
} S3L_Model3D; ///< Represents a 3D model.
|
|
|
|
void S3L_model3DInit(
|
|
const S3L_Unit *vertices,
|
|
S3L_Index vertexCount,
|
|
const S3L_Index *triangles,
|
|
S3L_Index triangleCount,
|
|
S3L_Model3D *model);
|
|
|
|
typedef struct
|
|
{
|
|
S3L_Model3D *models;
|
|
S3L_Index modelCount;
|
|
S3L_Camera camera;
|
|
} S3L_Scene; ///< Represent the 3D scene to be rendered.
|
|
|
|
void S3L_sceneInit(
|
|
S3L_Model3D *models,
|
|
S3L_Index modelCount,
|
|
S3L_Scene *scene);
|
|
|
|
typedef struct
|
|
{
|
|
S3L_ScreenCoord x; ///< Screen X coordinate.
|
|
S3L_ScreenCoord y; ///< Screen Y coordinate.
|
|
|
|
S3L_Unit barycentric[3]; /**< Barycentric coords correspond to the three
|
|
vertices. These serve to locate the pixel on a
|
|
triangle and interpolate values between its
|
|
three points. Each one goes from 0 to
|
|
S3L_FRACTIONS_PER_UNIT (including), but due to
|
|
rounding error may fall outside this range (you
|
|
can use S3L_correctBarycentricCoords to fix this
|
|
for the price of some performance). The sum of
|
|
the three coordinates will always be exactly
|
|
S3L_FRACTIONS_PER_UNIT. */
|
|
S3L_Index modelIndex; ///< Model index within the scene.
|
|
S3L_Index triangleIndex; ///< Triangle index within the model.
|
|
uint32_t triangleID; /**< Unique ID of the triangle withing the whole
|
|
scene. This can be used e.g. by a cache to
|
|
quickly find out if a triangle has changed. */
|
|
S3L_Unit depth; ///< Depth (only if depth is turned on).
|
|
S3L_Unit previousZ; /**< Z-buffer value (not necessarily world depth in
|
|
S3L_Units!) that was in the z-buffer on the
|
|
pixels position before this pixel was
|
|
rasterized. This can be used to set the value
|
|
back, e.g. for transparency. */
|
|
S3L_ScreenCoord triangleSize[2]; /**< Rasterized triangle width and height,
|
|
can be used e.g. for MIP mapping. */
|
|
} S3L_PixelInfo; /**< Used to pass the info about a rasterized pixel
|
|
(fragment) to the user-defined drawing func. */
|
|
|
|
static inline void S3L_pixelInfoInit(S3L_PixelInfo *p);
|
|
|
|
/** Corrects barycentric coordinates so that they exactly meet the defined
|
|
conditions (each fall into <0,S3L_FRACTIONS_PER_UNIT>, sum =
|
|
S3L_FRACTIONS_PER_UNIT). Note that doing this per-pixel can slow the program
|
|
down significantly. */
|
|
static inline void S3L_correctBarycentricCoords(S3L_Unit barycentric[3]);
|
|
|
|
// general helper functions
|
|
static inline S3L_Unit S3L_abs(S3L_Unit value);
|
|
static inline S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2);
|
|
static inline S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2);
|
|
static inline S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2);
|
|
static inline S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod);
|
|
static inline S3L_Unit S3L_nonZero(S3L_Unit value);
|
|
static inline S3L_Unit S3L_zeroClamp(S3L_Unit value);
|
|
|
|
S3L_Unit S3L_sin(S3L_Unit x);
|
|
S3L_Unit S3L_asin(S3L_Unit x);
|
|
static inline S3L_Unit S3L_cos(S3L_Unit x);
|
|
|
|
S3L_Unit S3L_vec3Length(S3L_Vec4 v);
|
|
S3L_Unit S3L_sqrt(S3L_Unit value);
|
|
|
|
/** Projects a single point from 3D space to the screen space (pixels), which
|
|
can be useful e.g. for drawing sprites. The w component of input and result
|
|
holds the point size. If this size is 0 in the result, the sprite is outside
|
|
the view. */
|
|
void S3L_project3DPointToScreen(
|
|
S3L_Vec4 point,
|
|
S3L_Camera camera,
|
|
S3L_Vec4 *result);
|
|
|
|
/** Computes a normalized normal of given triangle. */
|
|
void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2,
|
|
S3L_Vec4 *n);
|
|
|
|
/** Helper function for retrieving per-vertex indexed values from an array,
|
|
e.g. texturing (UV) coordinates. The 'indices' array contains three indices
|
|
for each triangle, each index pointing into 'values' array, which contains
|
|
the values, each one consisting of 'numComponents' components (e.g. 2 for
|
|
UV coordinates). The three values are retrieved into 'v0', 'v1' and 'v2'
|
|
vectors (into x, y, z and w, depending on 'numComponents'). This function is
|
|
meant to be used per-triangle (typically from a cache), NOT per-pixel, as it
|
|
is not as fast as possible! */
|
|
void S3L_getIndexedTriangleValues(
|
|
S3L_Index triangleIndex,
|
|
const S3L_Index *indices,
|
|
const S3L_Unit *values,
|
|
uint8_t numComponents,
|
|
S3L_Vec4 *v0,
|
|
S3L_Vec4 *v1,
|
|
S3L_Vec4 *v2);
|
|
|
|
/** Computes a normalized normal for every vertex of given model (this is
|
|
relatively slow and SHOUDN'T be done each frame). The dst array must have a
|
|
sufficient size preallocated! The size is: number of model vertices * 3 *
|
|
sizeof(S3L_Unit). Note that for advanced allowing sharp edges it is not
|
|
sufficient to have per-vertex normals, but must be per-triangle. This
|
|
function doesn't support this.
|
|
|
|
The function computes a normal for each vertex by averaging normals of
|
|
the triangles containing the vertex. The maximum number of these triangle
|
|
normals that will be averaged is set with
|
|
S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE. */
|
|
void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
|
|
int8_t transformNormals);
|
|
|
|
/** Interpolated between two values, v1 and v2, in the same ratio as t is to
|
|
tMax. Does NOT prevent zero division. */
|
|
static inline S3L_Unit S3L_interpolate(
|
|
S3L_Unit v1,
|
|
S3L_Unit v2,
|
|
S3L_Unit t,
|
|
S3L_Unit tMax);
|
|
|
|
/** Same as S3L_interpolate but with v1 == 0. Should be faster. */
|
|
static inline S3L_Unit S3L_interpolateFrom0(
|
|
S3L_Unit v2,
|
|
S3L_Unit t,
|
|
S3L_Unit tMax);
|
|
|
|
/** Like S3L_interpolate, but uses a parameter that goes from 0 to
|
|
S3L_FRACTIONS_PER_UNIT - 1, which can be faster. */
|
|
static inline S3L_Unit S3L_interpolateByUnit(
|
|
S3L_Unit v1,
|
|
S3L_Unit v2,
|
|
S3L_Unit t);
|
|
|
|
/** Same as S3L_interpolateByUnit but with v1 == 0. Should be faster. */
|
|
static inline S3L_Unit S3L_interpolateByUnitFrom0(
|
|
S3L_Unit v2,
|
|
S3L_Unit t);
|
|
|
|
static inline S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b);
|
|
|
|
/** Returns a value interpolated between the three triangle vertices based on
|
|
barycentric coordinates. */
|
|
static inline S3L_Unit S3L_interpolateBarycentric(
|
|
S3L_Unit value0,
|
|
S3L_Unit value1,
|
|
S3L_Unit value2,
|
|
S3L_Unit barycentric[3]);
|
|
|
|
static inline void S3L_mapProjectionPlaneToScreen(
|
|
S3L_Vec4 point,
|
|
S3L_ScreenCoord *screenX,
|
|
S3L_ScreenCoord *screenY);
|
|
|
|
/** Draws a triangle according to given config. The vertices are specified in
|
|
Screen Space space (pixels). If perspective correction is enabled, each
|
|
vertex has to have a depth (Z position in camera space) specified in the Z
|
|
component. */
|
|
void S3L_drawTriangle(
|
|
S3L_Vec4 point0,
|
|
S3L_Vec4 point1,
|
|
S3L_Vec4 point2,
|
|
S3L_Index modelIndex,
|
|
S3L_Index triangleIndex);
|
|
|
|
/** This should be called before rendering each frame. The function clears
|
|
buffers and does potentially other things needed for the frame. */
|
|
void S3L_newFrame(void);
|
|
|
|
void S3L_zBufferClear(void);
|
|
void S3L_stencilBufferClear(void);
|
|
|
|
/** Writes a value (not necessarily depth! depends on the format of z-buffer)
|
|
to z-buffer (if enabled). Does NOT check boundaries! */
|
|
void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value);
|
|
|
|
/** Reads a value (not necessarily depth! depends on the format of z-buffer)
|
|
from z-buffer (if enabled). Does NOT check boundaries! */
|
|
S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y);
|
|
|
|
static inline void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle);
|
|
|
|
/** Predefined vertices of a cube to simply insert in an array. These come with
|
|
S3L_CUBE_TRIANGLES and S3L_CUBE_TEXCOORDS. */
|
|
#define S3L_CUBE_VERTICES(m)\
|
|
/* 0 front, bottom, right */\
|
|
m/2, -m/2, -m/2,\
|
|
/* 1 front, bottom, left */\
|
|
-m/2, -m/2, -m/2,\
|
|
/* 2 front, top, right */\
|
|
m/2, m/2, -m/2,\
|
|
/* 3 front, top, left */\
|
|
-m/2, m/2, -m/2,\
|
|
/* 4 back, bottom, right */\
|
|
m/2, -m/2, m/2,\
|
|
/* 5 back, bottom, left */\
|
|
-m/2, -m/2, m/2,\
|
|
/* 6 back, top, right */\
|
|
m/2, m/2, m/2,\
|
|
/* 7 back, top, left */\
|
|
-m/2, m/2, m/2
|
|
|
|
#define S3L_CUBE_VERTEX_COUNT 8
|
|
|
|
/** Predefined triangle indices of a cube, to be used with S3L_CUBE_VERTICES
|
|
and S3L_CUBE_TEXCOORDS. */
|
|
#define S3L_CUBE_TRIANGLES\
|
|
3, 0, 2, /* front */\
|
|
1, 0, 3,\
|
|
0, 4, 2, /* right */\
|
|
2, 4, 6,\
|
|
4, 5, 6, /* back */\
|
|
7, 6, 5,\
|
|
3, 7, 1, /* left */\
|
|
1, 7, 5,\
|
|
6, 3, 2, /* top */\
|
|
7, 3, 6,\
|
|
1, 4, 0, /* bottom */\
|
|
5, 4, 1
|
|
|
|
#define S3L_CUBE_TRIANGLE_COUNT 12
|
|
|
|
/** Predefined texture coordinates of a cube, corresponding to triangles (NOT
|
|
vertices), to be used with S3L_CUBE_VERTICES and S3L_CUBE_TRIANGLES. */
|
|
#define S3L_CUBE_TEXCOORDS(m)\
|
|
0,0, m,m, m,0,\
|
|
0,m, m,m, 0,0,\
|
|
m,m, m,0, 0,m,\
|
|
0,m, m,0, 0,0,\
|
|
m,0, 0,0, m,m,\
|
|
0,m, m,m, 0,0,\
|
|
0,0, 0,m, m,0,\
|
|
m,0, 0,m, m,m,\
|
|
0,0, m,m, m,0,\
|
|
0,m, m,m, 0,0,\
|
|
m,0, 0,m, m,m,\
|
|
0,0, 0,m, m,0
|
|
|
|
//=============================================================================
|
|
// privates
|
|
|
|
#define S3L_UNUSED(what) (void)(what) ///< helper macro for unused vars
|
|
|
|
#define S3L_HALF_RESOLUTION_X (S3L_RESOLUTION_X >> 1)
|
|
#define S3L_HALF_RESOLUTION_Y (S3L_RESOLUTION_Y >> 1)
|
|
|
|
#define S3L_PROJECTION_PLANE_HEIGHT\
|
|
((S3L_RESOLUTION_Y * S3L_F * 2) / S3L_RESOLUTION_X)
|
|
|
|
#if S3L_Z_BUFFER == 1
|
|
#define S3L_MAX_DEPTH 2147483647
|
|
S3L_Unit S3L_zBuffer[S3L_MAX_PIXELS];
|
|
#define S3L_zBufferFormat(depth) (depth)
|
|
#elif S3L_Z_BUFFER == 2
|
|
#define S3L_MAX_DEPTH 255
|
|
uint8_t S3L_zBuffer[S3L_MAX_PIXELS];
|
|
#define S3L_zBufferFormat(depth)\
|
|
S3L_min(255,(depth) >> S3L_REDUCED_Z_BUFFER_GRANULARITY)
|
|
#endif
|
|
|
|
#if S3L_Z_BUFFER
|
|
static inline int8_t S3L_zTest(
|
|
S3L_ScreenCoord x,
|
|
S3L_ScreenCoord y,
|
|
S3L_Unit depth)
|
|
{
|
|
uint32_t index = y * S3L_RESOLUTION_X + x;
|
|
|
|
depth = S3L_zBufferFormat(depth);
|
|
|
|
#if S3L_Z_BUFFER == 2
|
|
#define cmp <= /* For reduced z-buffer we need equality test, because
|
|
otherwise pixels at the maximum depth (255) would never be
|
|
drawn over the background (which also has the depth of
|
|
255). */
|
|
#else
|
|
#define cmp < /* For normal z-buffer we leave out equality test to not waste
|
|
time by drawing over already drawn pixls. */
|
|
#endif
|
|
|
|
if (depth cmp S3L_zBuffer[index])
|
|
{
|
|
S3L_zBuffer[index] = depth;
|
|
return 1;
|
|
}
|
|
|
|
#undef cmp
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
S3L_Unit S3L_zBufferRead(S3L_ScreenCoord x, S3L_ScreenCoord y)
|
|
{
|
|
#if S3L_Z_BUFFER
|
|
return S3L_zBuffer[y * S3L_RESOLUTION_X + x];
|
|
#else
|
|
S3L_UNUSED(x);
|
|
S3L_UNUSED(y);
|
|
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void S3L_zBufferWrite(S3L_ScreenCoord x, S3L_ScreenCoord y, S3L_Unit value)
|
|
{
|
|
#if S3L_Z_BUFFER
|
|
S3L_zBuffer[y * S3L_RESOLUTION_X + x] = value;
|
|
#else
|
|
S3L_UNUSED(x);
|
|
S3L_UNUSED(y);
|
|
S3L_UNUSED(value);
|
|
#endif
|
|
}
|
|
|
|
#if S3L_STENCIL_BUFFER
|
|
#define S3L_STENCIL_BUFFER_SIZE\
|
|
((S3L_RESOLUTION_X * S3L_RESOLUTION_Y - 1) / 8 + 1)
|
|
|
|
uint8_t S3L_stencilBuffer[S3L_STENCIL_BUFFER_SIZE];
|
|
|
|
static inline int8_t S3L_stencilTest(
|
|
S3L_ScreenCoord x,
|
|
S3L_ScreenCoord y)
|
|
{
|
|
uint32_t index = y * S3L_RESOLUTION_X + x;
|
|
uint32_t bit = (index & 0x00000007);
|
|
index = index >> 3;
|
|
|
|
uint8_t val = S3L_stencilBuffer[index];
|
|
|
|
if ((val >> bit) & 0x1)
|
|
return 0;
|
|
|
|
S3L_stencilBuffer[index] = val | (0x1 << bit);
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#define S3L_COMPUTE_LERP_DEPTH\
|
|
(S3L_COMPUTE_DEPTH && (S3L_PERSPECTIVE_CORRECTION == 0))
|
|
|
|
#define S3L_SIN_TABLE_LENGTH 128
|
|
|
|
#if S3L_SIN_METHOD == 0
|
|
static const S3L_Unit S3L_sinTable[S3L_SIN_TABLE_LENGTH] =
|
|
{
|
|
/* 511 was chosen here as a highest number that doesn't overflow during
|
|
compilation for S3L_F == 1024 */
|
|
|
|
(0*S3L_F)/511, (6*S3L_F)/511,
|
|
(12*S3L_F)/511, (18*S3L_F)/511,
|
|
(25*S3L_F)/511, (31*S3L_F)/511,
|
|
(37*S3L_F)/511, (43*S3L_F)/511,
|
|
(50*S3L_F)/511, (56*S3L_F)/511,
|
|
(62*S3L_F)/511, (68*S3L_F)/511,
|
|
(74*S3L_F)/511, (81*S3L_F)/511,
|
|
(87*S3L_F)/511, (93*S3L_F)/511,
|
|
(99*S3L_F)/511, (105*S3L_F)/511,
|
|
(111*S3L_F)/511, (118*S3L_F)/511,
|
|
(124*S3L_F)/511, (130*S3L_F)/511,
|
|
(136*S3L_F)/511, (142*S3L_F)/511,
|
|
(148*S3L_F)/511, (154*S3L_F)/511,
|
|
(160*S3L_F)/511, (166*S3L_F)/511,
|
|
(172*S3L_F)/511, (178*S3L_F)/511,
|
|
(183*S3L_F)/511, (189*S3L_F)/511,
|
|
(195*S3L_F)/511, (201*S3L_F)/511,
|
|
(207*S3L_F)/511, (212*S3L_F)/511,
|
|
(218*S3L_F)/511, (224*S3L_F)/511,
|
|
(229*S3L_F)/511, (235*S3L_F)/511,
|
|
(240*S3L_F)/511, (246*S3L_F)/511,
|
|
(251*S3L_F)/511, (257*S3L_F)/511,
|
|
(262*S3L_F)/511, (268*S3L_F)/511,
|
|
(273*S3L_F)/511, (278*S3L_F)/511,
|
|
(283*S3L_F)/511, (289*S3L_F)/511,
|
|
(294*S3L_F)/511, (299*S3L_F)/511,
|
|
(304*S3L_F)/511, (309*S3L_F)/511,
|
|
(314*S3L_F)/511, (319*S3L_F)/511,
|
|
(324*S3L_F)/511, (328*S3L_F)/511,
|
|
(333*S3L_F)/511, (338*S3L_F)/511,
|
|
(343*S3L_F)/511, (347*S3L_F)/511,
|
|
(352*S3L_F)/511, (356*S3L_F)/511,
|
|
(361*S3L_F)/511, (365*S3L_F)/511,
|
|
(370*S3L_F)/511, (374*S3L_F)/511,
|
|
(378*S3L_F)/511, (382*S3L_F)/511,
|
|
(386*S3L_F)/511, (391*S3L_F)/511,
|
|
(395*S3L_F)/511, (398*S3L_F)/511,
|
|
(402*S3L_F)/511, (406*S3L_F)/511,
|
|
(410*S3L_F)/511, (414*S3L_F)/511,
|
|
(417*S3L_F)/511, (421*S3L_F)/511,
|
|
(424*S3L_F)/511, (428*S3L_F)/511,
|
|
(431*S3L_F)/511, (435*S3L_F)/511,
|
|
(438*S3L_F)/511, (441*S3L_F)/511,
|
|
(444*S3L_F)/511, (447*S3L_F)/511,
|
|
(450*S3L_F)/511, (453*S3L_F)/511,
|
|
(456*S3L_F)/511, (459*S3L_F)/511,
|
|
(461*S3L_F)/511, (464*S3L_F)/511,
|
|
(467*S3L_F)/511, (469*S3L_F)/511,
|
|
(472*S3L_F)/511, (474*S3L_F)/511,
|
|
(476*S3L_F)/511, (478*S3L_F)/511,
|
|
(481*S3L_F)/511, (483*S3L_F)/511,
|
|
(485*S3L_F)/511, (487*S3L_F)/511,
|
|
(488*S3L_F)/511, (490*S3L_F)/511,
|
|
(492*S3L_F)/511, (494*S3L_F)/511,
|
|
(495*S3L_F)/511, (497*S3L_F)/511,
|
|
(498*S3L_F)/511, (499*S3L_F)/511,
|
|
(501*S3L_F)/511, (502*S3L_F)/511,
|
|
(503*S3L_F)/511, (504*S3L_F)/511,
|
|
(505*S3L_F)/511, (506*S3L_F)/511,
|
|
(507*S3L_F)/511, (507*S3L_F)/511,
|
|
(508*S3L_F)/511, (509*S3L_F)/511,
|
|
(509*S3L_F)/511, (510*S3L_F)/511,
|
|
(510*S3L_F)/511, (510*S3L_F)/511,
|
|
(510*S3L_F)/511, (510*S3L_F)/511
|
|
};
|
|
#endif
|
|
|
|
#define S3L_SIN_TABLE_UNIT_STEP\
|
|
(S3L_F / (S3L_SIN_TABLE_LENGTH * 4))
|
|
|
|
void S3L_vec4Init(S3L_Vec4 *v)
|
|
{
|
|
v->x = 0; v->y = 0; v->z = 0; v->w = S3L_F;
|
|
}
|
|
|
|
void S3L_vec4Set(S3L_Vec4 *v, S3L_Unit x, S3L_Unit y, S3L_Unit z, S3L_Unit w)
|
|
{
|
|
v->x = x;
|
|
v->y = y;
|
|
v->z = z;
|
|
v->w = w;
|
|
}
|
|
|
|
void S3L_vec3Add(S3L_Vec4 *result, S3L_Vec4 added)
|
|
{
|
|
result->x += added.x;
|
|
result->y += added.y;
|
|
result->z += added.z;
|
|
}
|
|
|
|
void S3L_vec3Sub(S3L_Vec4 *result, S3L_Vec4 substracted)
|
|
{
|
|
result->x -= substracted.x;
|
|
result->y -= substracted.y;
|
|
result->z -= substracted.z;
|
|
}
|
|
|
|
void S3L_mat4Init(S3L_Mat4 m)
|
|
{
|
|
#define M(x,y) m[x][y]
|
|
#define S S3L_F
|
|
|
|
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
void S3L_mat4Copy(S3L_Mat4 src, S3L_Mat4 dst)
|
|
{
|
|
for (uint8_t j = 0; j < 4; ++j)
|
|
for (uint8_t i = 0; i < 4; ++i)
|
|
dst[i][j] = src[i][j];
|
|
}
|
|
|
|
S3L_Unit S3L_vec3Dot(S3L_Vec4 a, S3L_Vec4 b)
|
|
{
|
|
return (a.x * b.x + a.y * b.y + a.z * b.z) / S3L_F;
|
|
}
|
|
|
|
void S3L_reflect(S3L_Vec4 toLight, S3L_Vec4 normal, S3L_Vec4 *result)
|
|
{
|
|
S3L_Unit d = 2 * S3L_vec3Dot(toLight,normal);
|
|
|
|
result->x = (normal.x * d) / S3L_F - toLight.x;
|
|
result->y = (normal.y * d) / S3L_F - toLight.y;
|
|
result->z = (normal.z * d) / S3L_F - toLight.z;
|
|
}
|
|
|
|
void S3L_vec3Cross(S3L_Vec4 a, S3L_Vec4 b, S3L_Vec4 *result)
|
|
{
|
|
result->x = a.y * b.z - a.z * b.y;
|
|
result->y = a.z * b.x - a.x * b.z;
|
|
result->z = a.x * b.y - a.y * b.x;
|
|
}
|
|
|
|
void S3L_triangleNormal(S3L_Vec4 t0, S3L_Vec4 t1, S3L_Vec4 t2, S3L_Vec4 *n)
|
|
{
|
|
#define ANTI_OVERFLOW 32
|
|
|
|
t1.x = (t1.x - t0.x) / ANTI_OVERFLOW;
|
|
t1.y = (t1.y - t0.y) / ANTI_OVERFLOW;
|
|
t1.z = (t1.z - t0.z) / ANTI_OVERFLOW;
|
|
|
|
t2.x = (t2.x - t0.x) / ANTI_OVERFLOW;
|
|
t2.y = (t2.y - t0.y) / ANTI_OVERFLOW;
|
|
t2.z = (t2.z - t0.z) / ANTI_OVERFLOW;
|
|
|
|
#undef ANTI_OVERFLOW
|
|
|
|
S3L_vec3Cross(t1,t2,n);
|
|
|
|
S3L_vec3Normalize(n);
|
|
}
|
|
|
|
void S3L_getIndexedTriangleValues(
|
|
S3L_Index triangleIndex,
|
|
const S3L_Index *indices,
|
|
const S3L_Unit *values,
|
|
uint8_t numComponents,
|
|
S3L_Vec4 *v0,
|
|
S3L_Vec4 *v1,
|
|
S3L_Vec4 *v2)
|
|
{
|
|
uint32_t i0, i1;
|
|
S3L_Unit *value;
|
|
|
|
i0 = triangleIndex * 3;
|
|
i1 = indices[i0] * numComponents;
|
|
value = (S3L_Unit *) v0;
|
|
|
|
if (numComponents > 4)
|
|
numComponents = 4;
|
|
|
|
for (uint8_t j = 0; j < numComponents; ++j)
|
|
{
|
|
*value = values[i1];
|
|
i1++;
|
|
value++;
|
|
}
|
|
|
|
i0++;
|
|
i1 = indices[i0] * numComponents;
|
|
value = (S3L_Unit *) v1;
|
|
|
|
for (uint8_t j = 0; j < numComponents; ++j)
|
|
{
|
|
*value = values[i1];
|
|
i1++;
|
|
value++;
|
|
}
|
|
|
|
i0++;
|
|
i1 = indices[i0] * numComponents;
|
|
value = (S3L_Unit *) v2;
|
|
|
|
for (uint8_t j = 0; j < numComponents; ++j)
|
|
{
|
|
*value = values[i1];
|
|
i1++;
|
|
value++;
|
|
}
|
|
}
|
|
|
|
void S3L_computeModelNormals(S3L_Model3D model, S3L_Unit *dst,
|
|
int8_t transformNormals)
|
|
{
|
|
S3L_Index vPos = 0;
|
|
|
|
S3L_Vec4 n;
|
|
|
|
n.w = 0;
|
|
|
|
S3L_Vec4 ns[S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE];
|
|
S3L_Index normalCount;
|
|
|
|
for (uint32_t i = 0; i < model.vertexCount; ++i)
|
|
{
|
|
normalCount = 0;
|
|
|
|
for (uint32_t j = 0; j < model.triangleCount * 3; j += 3)
|
|
{
|
|
if (
|
|
(model.triangles[j] == i) ||
|
|
(model.triangles[j + 1] == i) ||
|
|
(model.triangles[j + 2] == i))
|
|
{
|
|
S3L_Vec4 t0, t1, t2;
|
|
uint32_t vIndex;
|
|
|
|
#define getVertex(n)\
|
|
vIndex = model.triangles[j + n] * 3;\
|
|
t##n.x = model.vertices[vIndex];\
|
|
vIndex++;\
|
|
t##n.y = model.vertices[vIndex];\
|
|
vIndex++;\
|
|
t##n.z = model.vertices[vIndex];
|
|
|
|
getVertex(0)
|
|
getVertex(1)
|
|
getVertex(2)
|
|
|
|
#undef getVertex
|
|
|
|
S3L_triangleNormal(t0,t1,t2,&(ns[normalCount]));
|
|
|
|
normalCount++;
|
|
|
|
if (normalCount >= S3L_NORMAL_COMPUTE_MAXIMUM_AVERAGE)
|
|
break;
|
|
}
|
|
}
|
|
|
|
n.x = S3L_F;
|
|
n.y = 0;
|
|
n.z = 0;
|
|
|
|
if (normalCount != 0)
|
|
{
|
|
// compute average
|
|
|
|
n.x = 0;
|
|
|
|
for (uint8_t i = 0; i < normalCount; ++i)
|
|
{
|
|
n.x += ns[i].x;
|
|
n.y += ns[i].y;
|
|
n.z += ns[i].z;
|
|
}
|
|
|
|
n.x /= normalCount;
|
|
n.y /= normalCount;
|
|
n.z /= normalCount;
|
|
|
|
S3L_vec3Normalize(&n);
|
|
}
|
|
|
|
dst[vPos] = n.x;
|
|
vPos++;
|
|
|
|
dst[vPos] = n.y;
|
|
vPos++;
|
|
|
|
dst[vPos] = n.z;
|
|
vPos++;
|
|
}
|
|
|
|
S3L_Mat4 m;
|
|
|
|
S3L_makeWorldMatrix(model.transform,m);
|
|
|
|
if (transformNormals)
|
|
for (S3L_Index i = 0; i < model.vertexCount * 3; i += 3)
|
|
{
|
|
n.x = dst[i];
|
|
n.y = dst[i + 1];
|
|
n.z = dst[i + 2];
|
|
|
|
S3L_vec4Xmat4(&n,m);
|
|
|
|
dst[i] = n.x;
|
|
dst[i + 1] = n.y;
|
|
dst[i + 2] = n.z;
|
|
}
|
|
}
|
|
|
|
void S3L_vec4Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
|
|
{
|
|
S3L_Vec4 vBackup;
|
|
|
|
vBackup.x = v->x;
|
|
vBackup.y = v->y;
|
|
vBackup.z = v->z;
|
|
vBackup.w = v->w;
|
|
|
|
#define dotCol(col)\
|
|
((vBackup.x * m[col][0]) +\
|
|
(vBackup.y * m[col][1]) +\
|
|
(vBackup.z * m[col][2]) +\
|
|
(vBackup.w * m[col][3])) / S3L_F
|
|
|
|
v->x = dotCol(0);
|
|
v->y = dotCol(1);
|
|
v->z = dotCol(2);
|
|
v->w = dotCol(3);
|
|
}
|
|
|
|
void S3L_vec3Xmat4(S3L_Vec4 *v, S3L_Mat4 m)
|
|
{
|
|
S3L_Vec4 vBackup;
|
|
|
|
#undef dotCol
|
|
#define dotCol(col)\
|
|
(vBackup.x * m[col][0]) / S3L_F +\
|
|
(vBackup.y * m[col][1]) / S3L_F +\
|
|
(vBackup.z * m[col][2]) / S3L_F +\
|
|
m[col][3]
|
|
|
|
vBackup.x = v->x;
|
|
vBackup.y = v->y;
|
|
vBackup.z = v->z;
|
|
vBackup.w = v->w;
|
|
|
|
v->x = dotCol(0);
|
|
v->y = dotCol(1);
|
|
v->z = dotCol(2);
|
|
v->w = S3L_F;
|
|
}
|
|
|
|
#undef dotCol
|
|
|
|
S3L_Unit S3L_abs(S3L_Unit value)
|
|
{
|
|
return value * (((value >= 0) << 1) - 1);
|
|
}
|
|
|
|
S3L_Unit S3L_min(S3L_Unit v1, S3L_Unit v2)
|
|
{
|
|
return v1 >= v2 ? v2 : v1;
|
|
}
|
|
|
|
S3L_Unit S3L_max(S3L_Unit v1, S3L_Unit v2)
|
|
{
|
|
return v1 >= v2 ? v1 : v2;
|
|
}
|
|
|
|
S3L_Unit S3L_clamp(S3L_Unit v, S3L_Unit v1, S3L_Unit v2)
|
|
{
|
|
return v >= v1 ? (v <= v2 ? v : v2) : v1;
|
|
}
|
|
|
|
S3L_Unit S3L_zeroClamp(S3L_Unit value)
|
|
{
|
|
return (value * (value >= 0));
|
|
}
|
|
|
|
S3L_Unit S3L_wrap(S3L_Unit value, S3L_Unit mod)
|
|
{
|
|
return value >= 0 ? (value % mod) : (mod + (value % mod) - 1);
|
|
}
|
|
|
|
S3L_Unit S3L_nonZero(S3L_Unit value)
|
|
{
|
|
return (value + (value == 0));
|
|
}
|
|
|
|
S3L_Unit S3L_interpolate(S3L_Unit v1, S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
|
|
{
|
|
return v1 + ((v2 - v1) * t) / tMax;
|
|
}
|
|
|
|
S3L_Unit S3L_interpolateByUnit(S3L_Unit v1, S3L_Unit v2, S3L_Unit t)
|
|
{
|
|
return v1 + ((v2 - v1) * t) / S3L_F;
|
|
}
|
|
|
|
S3L_Unit S3L_interpolateByUnitFrom0(S3L_Unit v2, S3L_Unit t)
|
|
{
|
|
return (v2 * t) / S3L_F;
|
|
}
|
|
|
|
S3L_Unit S3L_interpolateFrom0(S3L_Unit v2, S3L_Unit t, S3L_Unit tMax)
|
|
{
|
|
return (v2 * t) / tMax;
|
|
}
|
|
|
|
S3L_Unit S3L_distanceManhattan(S3L_Vec4 a, S3L_Vec4 b)
|
|
{
|
|
return
|
|
S3L_abs(a.x - b.x) +
|
|
S3L_abs(a.y - b.y) +
|
|
S3L_abs(a.z - b.z);
|
|
}
|
|
|
|
void S3L_mat4Xmat4(S3L_Mat4 m1, S3L_Mat4 m2)
|
|
{
|
|
S3L_Mat4 mat1;
|
|
|
|
for (uint16_t row = 0; row < 4; ++row)
|
|
for (uint16_t col = 0; col < 4; ++col)
|
|
mat1[col][row] = m1[col][row];
|
|
|
|
for (uint16_t row = 0; row < 4; ++row)
|
|
for (uint16_t col = 0; col < 4; ++col)
|
|
{
|
|
m1[col][row] = 0;
|
|
|
|
for (uint16_t i = 0; i < 4; ++i)
|
|
m1[col][row] +=
|
|
(mat1[i][row] * m2[col][i]) / S3L_F;
|
|
}
|
|
}
|
|
|
|
S3L_Unit S3L_sin(S3L_Unit x)
|
|
{
|
|
#if S3L_SIN_METHOD == 0
|
|
x = S3L_wrap(x / S3L_SIN_TABLE_UNIT_STEP,S3L_SIN_TABLE_LENGTH * 4);
|
|
int8_t positive = 1;
|
|
|
|
if (x < S3L_SIN_TABLE_LENGTH)
|
|
{
|
|
}
|
|
else if (x < S3L_SIN_TABLE_LENGTH * 2)
|
|
{
|
|
x = S3L_SIN_TABLE_LENGTH * 2 - x - 1;
|
|
}
|
|
else if (x < S3L_SIN_TABLE_LENGTH * 3)
|
|
{
|
|
x = x - S3L_SIN_TABLE_LENGTH * 2;
|
|
positive = 0;
|
|
}
|
|
else
|
|
{
|
|
x = S3L_SIN_TABLE_LENGTH - (x - S3L_SIN_TABLE_LENGTH * 3) - 1;
|
|
positive = 0;
|
|
}
|
|
|
|
return positive ? S3L_sinTable[x] : -1 * S3L_sinTable[x];
|
|
#else
|
|
int8_t sign = 1;
|
|
|
|
if (x < 0) // odd function
|
|
{
|
|
x *= -1;
|
|
sign = -1;
|
|
}
|
|
|
|
x %= S3L_F;
|
|
|
|
if (x > S3L_F / 2)
|
|
{
|
|
x -= S3L_F / 2;
|
|
sign *= -1;
|
|
}
|
|
|
|
S3L_Unit tmp = S3L_F - 2 * x;
|
|
|
|
#define _PI2 ((S3L_Unit) (9.8696044 * S3L_F))
|
|
return sign * // Bhaskara's approximation
|
|
(((32 * x * _PI2) / S3L_F) * tmp) /
|
|
((_PI2 * (5 * S3L_F - (8 * x * tmp) /
|
|
S3L_F)) / S3L_F);
|
|
#undef _PI2
|
|
#endif
|
|
}
|
|
|
|
S3L_Unit S3L_asin(S3L_Unit x)
|
|
{
|
|
#if S3L_SIN_METHOD == 0
|
|
x = S3L_clamp(x,-S3L_F,S3L_F);
|
|
|
|
int8_t sign = 1;
|
|
|
|
if (x < 0)
|
|
{
|
|
sign = -1;
|
|
x *= -1;
|
|
}
|
|
|
|
int16_t low = 0, high = S3L_SIN_TABLE_LENGTH -1, middle;
|
|
|
|
while (low <= high) // binary search
|
|
{
|
|
middle = (low + high) / 2;
|
|
|
|
S3L_Unit v = S3L_sinTable[middle];
|
|
|
|
if (v > x)
|
|
high = middle - 1;
|
|
else if (v < x)
|
|
low = middle + 1;
|
|
else
|
|
break;
|
|
}
|
|
|
|
middle *= S3L_SIN_TABLE_UNIT_STEP;
|
|
|
|
return sign * middle;
|
|
#else
|
|
S3L_Unit low = -1 * S3L_F / 4,
|
|
high = S3L_F / 4,
|
|
middle;
|
|
|
|
while (low <= high) // binary search
|
|
{
|
|
middle = (low + high) / 2;
|
|
|
|
S3L_Unit v = S3L_sin(middle);
|
|
|
|
if (v > x)
|
|
high = middle - 1;
|
|
else if (v < x)
|
|
low = middle + 1;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return middle;
|
|
#endif
|
|
}
|
|
|
|
S3L_Unit S3L_cos(S3L_Unit x)
|
|
{
|
|
return S3L_sin(x + S3L_F / 4);
|
|
}
|
|
|
|
void S3L_correctBarycentricCoords(S3L_Unit barycentric[3])
|
|
{
|
|
barycentric[0] = S3L_clamp(barycentric[0],0,S3L_F);
|
|
barycentric[1] = S3L_clamp(barycentric[1],0,S3L_F);
|
|
|
|
S3L_Unit d = S3L_F - barycentric[0] - barycentric[1];
|
|
|
|
if (d < 0)
|
|
{
|
|
barycentric[0] += d;
|
|
barycentric[2] = 0;
|
|
}
|
|
else
|
|
barycentric[2] = d;
|
|
}
|
|
|
|
void S3L_makeTranslationMat(
|
|
S3L_Unit offsetX,
|
|
S3L_Unit offsetY,
|
|
S3L_Unit offsetZ,
|
|
S3L_Mat4 m)
|
|
{
|
|
#define M(x,y) m[x][y]
|
|
#define S S3L_F
|
|
|
|
M(0,0) = S; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = S; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = S; M(3,2) = 0;
|
|
M(0,3) = offsetX; M(1,3) = offsetY; M(2,3) = offsetZ; M(3,3) = S;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
void S3L_makeScaleMatrix(
|
|
S3L_Unit scaleX,
|
|
S3L_Unit scaleY,
|
|
S3L_Unit scaleZ,
|
|
S3L_Mat4 m)
|
|
{
|
|
#define M(x,y) m[x][y]
|
|
|
|
M(0,0) = scaleX; M(1,0) = 0; M(2,0) = 0; M(3,0) = 0;
|
|
M(0,1) = 0; M(1,1) = scaleY; M(2,1) = 0; M(3,1) = 0;
|
|
M(0,2) = 0; M(1,2) = 0; M(2,2) = scaleZ; M(3,2) = 0;
|
|
M(0,3) = 0; M(1,3) = 0; M(2,3) = 0; M(3,3) = S3L_F;
|
|
|
|
#undef M
|
|
}
|
|
|
|
void S3L_makeRotationMatrixZXY(
|
|
S3L_Unit byX,
|
|
S3L_Unit byY,
|
|
S3L_Unit byZ,
|
|
S3L_Mat4 m)
|
|
{
|
|
byX *= -1;
|
|
byY *= -1;
|
|
byZ *= -1;
|
|
|
|
S3L_Unit sx = S3L_sin(byX);
|
|
S3L_Unit sy = S3L_sin(byY);
|
|
S3L_Unit sz = S3L_sin(byZ);
|
|
|
|
S3L_Unit cx = S3L_cos(byX);
|
|
S3L_Unit cy = S3L_cos(byY);
|
|
S3L_Unit cz = S3L_cos(byZ);
|
|
|
|
#define M(x,y) m[x][y]
|
|
#define S S3L_F
|
|
|
|
M(0,0) = (cy * cz) / S + (sy * sx * sz) / (S * S);
|
|
M(1,0) = (cx * sz) / S;
|
|
M(2,0) = (cy * sx * sz) / (S * S) - (cz * sy) / S;
|
|
M(3,0) = 0;
|
|
|
|
M(0,1) = (cz * sy * sx) / (S * S) - (cy * sz) / S;
|
|
M(1,1) = (cx * cz) / S;
|
|
M(2,1) = (cy * cz * sx) / (S * S) + (sy * sz) / S;
|
|
M(3,1) = 0;
|
|
|
|
M(0,2) = (cx * sy) / S;
|
|
M(1,2) = -1 * sx;
|
|
M(2,2) = (cy * cx) / S;
|
|
M(3,2) = 0;
|
|
|
|
M(0,3) = 0;
|
|
M(1,3) = 0;
|
|
M(2,3) = 0;
|
|
M(3,3) = S3L_F;
|
|
|
|
#undef M
|
|
#undef S
|
|
}
|
|
|
|
S3L_Unit S3L_sqrt(S3L_Unit value)
|
|
{
|
|
int8_t sign = 1;
|
|
|
|
if (value < 0)
|
|
{
|
|
sign = -1;
|
|
value *= -1;
|
|
}
|
|
|
|
uint32_t result = 0;
|
|
uint32_t a = value;
|
|
uint32_t b = 1u << 30;
|
|
|
|
while (b > a)
|
|
b >>= 2;
|
|
|
|
while (b != 0)
|
|
{
|
|
if (a >= result + b)
|
|
{
|
|
a -= result + b;
|
|
result = result + 2 * b;
|
|
}
|
|
|
|
b >>= 2;
|
|
result >>= 1;
|
|
}
|
|
|
|
return result * sign;
|
|
}
|
|
|
|
S3L_Unit S3L_vec3Length(S3L_Vec4 v)
|
|
{
|
|
return S3L_sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
|
|
}
|
|
|
|
S3L_Unit S3L_vec2Length(S3L_Vec4 v)
|
|
{
|
|
return S3L_sqrt(v.x * v.x + v.y * v.y);
|
|
}
|
|
|
|
void S3L_vec3Normalize(S3L_Vec4 *v)
|
|
{
|
|
#define SCALE 16
|
|
#define BOTTOM_LIMIT 16
|
|
#define UPPER_LIMIT 900
|
|
|
|
/* Here we try to decide if the vector is too small and would cause
|
|
inaccurate result due to very its inaccurate length. If so, we scale
|
|
it up. We can't scale up everything as big vectors overflow in length
|
|
calculations. */
|
|
|
|
if (
|
|
S3L_abs(v->x) <= BOTTOM_LIMIT &&
|
|
S3L_abs(v->y) <= BOTTOM_LIMIT &&
|
|
S3L_abs(v->z) <= BOTTOM_LIMIT)
|
|
{
|
|
v->x *= SCALE;
|
|
v->y *= SCALE;
|
|
v->z *= SCALE;
|
|
}
|
|
else if (
|
|
S3L_abs(v->x) > UPPER_LIMIT ||
|
|
S3L_abs(v->y) > UPPER_LIMIT ||
|
|
S3L_abs(v->z) > UPPER_LIMIT)
|
|
{
|
|
v->x /= SCALE;
|
|
v->y /= SCALE;
|
|
v->z /= SCALE;
|
|
}
|
|
|
|
#undef SCALE
|
|
#undef BOTTOM_LIMIT
|
|
#undef UPPER_LIMIT
|
|
|
|
S3L_Unit l = S3L_vec3Length(*v);
|
|
|
|
if (l == 0)
|
|
return;
|
|
|
|
v->x = (v->x * S3L_F) / l;
|
|
v->y = (v->y * S3L_F) / l;
|
|
v->z = (v->z * S3L_F) / l;
|
|
}
|
|
|
|
void S3L_vec3NormalizeFast(S3L_Vec4 *v)
|
|
{
|
|
S3L_Unit l = S3L_vec3Length(*v);
|
|
|
|
if (l == 0)
|
|
return;
|
|
|
|
v->x = (v->x * S3L_F) / l;
|
|
v->y = (v->y * S3L_F) / l;
|
|
v->z = (v->z * S3L_F) / l;
|
|
}
|
|
|
|
void S3L_transform3DInit(S3L_Transform3D *t)
|
|
{
|
|
S3L_vec4Init(&(t->translation));
|
|
S3L_vec4Init(&(t->rotation));
|
|
t->scale.x = S3L_F;
|
|
t->scale.y = S3L_F;
|
|
t->scale.z = S3L_F;
|
|
t->scale.w = 0;
|
|
}
|
|
|
|
/** Performs perspecive division (z-divide). Does NOT check for division by
|
|
zero. */
|
|
static inline void S3L_perspectiveDivide(S3L_Vec4 *vector,
|
|
S3L_Unit focalLength)
|
|
{
|
|
vector->x = (vector->x * focalLength) / vector->z;
|
|
vector->y = (vector->y * focalLength) / vector->z;
|
|
}
|
|
|
|
void S3L_project3DPointToScreen(
|
|
S3L_Vec4 point,
|
|
S3L_Camera camera,
|
|
S3L_Vec4 *result)
|
|
{
|
|
// TODO: hotfix to prevent a mapping bug probably to overlfows
|
|
S3L_Vec4 toPoint = point, camForw;
|
|
|
|
S3L_vec3Sub(&toPoint,camera.transform.translation);
|
|
|
|
S3L_vec3Normalize(&toPoint);
|
|
|
|
S3L_rotationToDirections(camera.transform.rotation,S3L_FRACTIONS_PER_UNIT,
|
|
&camForw,0,0);
|
|
|
|
if (S3L_vec3Dot(toPoint,camForw) < S3L_FRACTIONS_PER_UNIT / 6)
|
|
{
|
|
result->z = -1;
|
|
result->w = 0;
|
|
return;
|
|
}
|
|
// end of hotfix
|
|
S3L_Mat4 m;
|
|
S3L_makeCameraMatrix(camera.transform,m);
|
|
|
|
S3L_Unit s = point.w;
|
|
|
|
point.w = S3L_F;
|
|
|
|
S3L_vec3Xmat4(&point,m);
|
|
|
|
point.z = S3L_nonZero(point.z);
|
|
|
|
S3L_perspectiveDivide(&point,camera.focalLength);
|
|
|
|
S3L_ScreenCoord x, y;
|
|
|
|
S3L_mapProjectionPlaneToScreen(point,&x,&y);
|
|
|
|
result->x = x;
|
|
result->y = y;
|
|
result->z = point.z;
|
|
|
|
result->w =
|
|
(point.z <= 0) ? 0 :
|
|
(
|
|
(s * camera.focalLength * S3L_RESOLUTION_X) /
|
|
(point.z * S3L_F)
|
|
);
|
|
}
|
|
|
|
void S3L_lookAt(S3L_Vec4 pointTo, S3L_Transform3D *t)
|
|
{
|
|
S3L_Vec4 v;
|
|
|
|
v.x = pointTo.x - t->translation.x;
|
|
v.y = pointTo.z - t->translation.z;
|
|
|
|
S3L_Unit dx = v.x;
|
|
S3L_Unit l = S3L_vec2Length(v);
|
|
|
|
dx = (v.x * S3L_F) / S3L_nonZero(l); // normalize
|
|
|
|
t->rotation.y = -1 * S3L_asin(dx);
|
|
|
|
if (v.y < 0)
|
|
t->rotation.y = S3L_F / 2 - t->rotation.y;
|
|
|
|
v.x = pointTo.y - t->translation.y;
|
|
v.y = l;
|
|
|
|
l = S3L_vec2Length(v);
|
|
|
|
dx = (v.x * S3L_F) / S3L_nonZero(l);
|
|
|
|
t->rotation.x = S3L_asin(dx);
|
|
}
|
|
|
|
void S3L_transform3DSet(
|
|
S3L_Unit tx,
|
|
S3L_Unit ty,
|
|
S3L_Unit tz,
|
|
S3L_Unit rx,
|
|
S3L_Unit ry,
|
|
S3L_Unit rz,
|
|
S3L_Unit sx,
|
|
S3L_Unit sy,
|
|
S3L_Unit sz,
|
|
S3L_Transform3D *t)
|
|
{
|
|
t->translation.x = tx;
|
|
t->translation.y = ty;
|
|
t->translation.z = tz;
|
|
|
|
t->rotation.x = rx;
|
|
t->rotation.y = ry;
|
|
t->rotation.z = rz;
|
|
|
|
t->scale.x = sx;
|
|
t->scale.y = sy;
|
|
t->scale.z = sz;
|
|
}
|
|
|
|
void S3L_cameraInit(S3L_Camera *camera)
|
|
{
|
|
camera->focalLength = S3L_F;
|
|
S3L_transform3DInit(&(camera->transform));
|
|
}
|
|
|
|
void S3L_rotationToDirections(
|
|
S3L_Vec4 rotation,
|
|
S3L_Unit length,
|
|
S3L_Vec4 *forw,
|
|
S3L_Vec4 *right,
|
|
S3L_Vec4 *up)
|
|
{
|
|
S3L_Mat4 m;
|
|
|
|
S3L_makeRotationMatrixZXY(rotation.x,rotation.y,rotation.z,m);
|
|
|
|
if (forw != 0)
|
|
{
|
|
forw->x = 0;
|
|
forw->y = 0;
|
|
forw->z = length;
|
|
S3L_vec3Xmat4(forw,m);
|
|
}
|
|
|
|
if (right != 0)
|
|
{
|
|
right->x = length;
|
|
right->y = 0;
|
|
right->z = 0;
|
|
S3L_vec3Xmat4(right,m);
|
|
}
|
|
|
|
if (up != 0)
|
|
{
|
|
up->x = 0;
|
|
up->y = length;
|
|
up->z = 0;
|
|
S3L_vec3Xmat4(up,m);
|
|
}
|
|
}
|
|
|
|
void S3L_pixelInfoInit(S3L_PixelInfo *p)
|
|
{
|
|
p->x = 0;
|
|
p->y = 0;
|
|
p->barycentric[0] = S3L_F;
|
|
p->barycentric[1] = 0;
|
|
p->barycentric[2] = 0;
|
|
p->modelIndex = 0;
|
|
p->triangleIndex = 0;
|
|
p->triangleID = 0;
|
|
p->depth = 0;
|
|
p->previousZ = 0;
|
|
}
|
|
|
|
void S3L_model3DInit(
|
|
const S3L_Unit *vertices,
|
|
S3L_Index vertexCount,
|
|
const S3L_Index *triangles,
|
|
S3L_Index triangleCount,
|
|
S3L_Model3D *model)
|
|
{
|
|
model->vertices = vertices;
|
|
model->vertexCount = vertexCount;
|
|
model->triangles = triangles;
|
|
model->triangleCount = triangleCount;
|
|
model->customTransformMatrix = 0;
|
|
|
|
S3L_transform3DInit(&(model->transform));
|
|
S3L_drawConfigInit(&(model->config));
|
|
}
|
|
|
|
void S3L_sceneInit(
|
|
S3L_Model3D *models,
|
|
S3L_Index modelCount,
|
|
S3L_Scene *scene)
|
|
{
|
|
scene->models = models;
|
|
scene->modelCount = modelCount;
|
|
S3L_cameraInit(&(scene->camera));
|
|
}
|
|
|
|
void S3L_drawConfigInit(S3L_DrawConfig *config)
|
|
{
|
|
config->backfaceCulling = 2;
|
|
config->visible = 1;
|
|
}
|
|
|
|
#ifndef S3L_PIXEL_FUNCTION
|
|
#error Pixel rendering function (S3L_PIXEL_FUNCTION) not specified!
|
|
#endif
|
|
|
|
static inline void S3L_PIXEL_FUNCTION(S3L_PixelInfo *pixel); // forward decl
|
|
|
|
/** Serves to accelerate linear interpolation for performance-critical
|
|
code. Functions such as S3L_interpolate require division to compute each
|
|
interpolated value, while S3L_FastLerpState only requires a division for
|
|
the initiation and a shift for retrieving each interpolated value.
|
|
|
|
S3L_FastLerpState stores a value and a step, both scaled (shifted by
|
|
S3L_FAST_LERP_QUALITY) to increase precision. The step is being added to the
|
|
value, which achieves the interpolation. This will only be useful for
|
|
interpolations in which we need to get the interpolated value in every step.
|
|
|
|
BEWARE! Shifting a negative value is undefined, so handling shifting of
|
|
negative values has to be done cleverly. */
|
|
typedef struct
|
|
{
|
|
S3L_Unit valueScaled;
|
|
S3L_Unit stepScaled;
|
|
} S3L_FastLerpState;
|
|
|
|
#define S3L_getFastLerpValue(state)\
|
|
(state.valueScaled >> S3L_FAST_LERP_QUALITY)
|
|
|
|
#define S3L_stepFastLerp(state)\
|
|
state.valueScaled += state.stepScaled
|
|
|
|
static inline S3L_Unit S3L_interpolateBarycentric(
|
|
S3L_Unit value0,
|
|
S3L_Unit value1,
|
|
S3L_Unit value2,
|
|
S3L_Unit barycentric[3])
|
|
{
|
|
return
|
|
(
|
|
(value0 * barycentric[0]) +
|
|
(value1 * barycentric[1]) +
|
|
(value2 * barycentric[2])
|
|
) / S3L_F;
|
|
}
|
|
|
|
void S3L_mapProjectionPlaneToScreen(
|
|
S3L_Vec4 point,
|
|
S3L_ScreenCoord *screenX,
|
|
S3L_ScreenCoord *screenY)
|
|
{
|
|
*screenX =
|
|
S3L_HALF_RESOLUTION_X +
|
|
(point.x * S3L_HALF_RESOLUTION_X) / S3L_F;
|
|
|
|
*screenY =
|
|
S3L_HALF_RESOLUTION_Y -
|
|
(point.y * S3L_HALF_RESOLUTION_X) / S3L_F;
|
|
}
|
|
|
|
void S3L_zBufferClear(void)
|
|
{
|
|
#if S3L_Z_BUFFER
|
|
for (uint32_t i = 0; i < S3L_RESOLUTION_X * S3L_RESOLUTION_Y; ++i)
|
|
S3L_zBuffer[i] = S3L_MAX_DEPTH;
|
|
#endif
|
|
}
|
|
|
|
void S3L_stencilBufferClear(void)
|
|
{
|
|
#if S3L_STENCIL_BUFFER
|
|
for (uint32_t i = 0; i < S3L_STENCIL_BUFFER_SIZE; ++i)
|
|
S3L_stencilBuffer[i] = 0;
|
|
#endif
|
|
}
|
|
|
|
void S3L_newFrame(void)
|
|
{
|
|
S3L_zBufferClear();
|
|
S3L_stencilBufferClear();
|
|
}
|
|
|
|
/*
|
|
the following serves to communicate info about if the triangle has been split
|
|
and how the barycentrics should be remapped.
|
|
*/
|
|
uint8_t _S3L_projectedTriangleState = 0; // 0 = normal, 1 = cut, 2 = split
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
S3L_Vec4 _S3L_triangleRemapBarycentrics[6];
|
|
#endif
|
|
|
|
void S3L_drawTriangle(
|
|
S3L_Vec4 point0,
|
|
S3L_Vec4 point1,
|
|
S3L_Vec4 point2,
|
|
S3L_Index modelIndex,
|
|
S3L_Index triangleIndex)
|
|
{
|
|
S3L_PixelInfo p;
|
|
S3L_pixelInfoInit(&p);
|
|
p.modelIndex = modelIndex;
|
|
p.triangleIndex = triangleIndex;
|
|
p.triangleID = (modelIndex << 16) | triangleIndex;
|
|
|
|
S3L_Vec4 *tPointSS, *lPointSS, *rPointSS; /* points in Screen Space (in
|
|
S3L_Units, normalized by
|
|
S3L_F) */
|
|
|
|
S3L_Unit *barycentric0; // bar. coord that gets higher from L to R
|
|
S3L_Unit *barycentric1; // bar. coord that gets higher from R to L
|
|
S3L_Unit *barycentric2; // bar. coord that gets higher from bottom up
|
|
|
|
// sort the vertices:
|
|
|
|
#define assignPoints(t,a,b)\
|
|
{\
|
|
tPointSS = &point##t;\
|
|
barycentric2 = &(p.barycentric[t]);\
|
|
if (S3L_triangleWinding(point##t.x,point##t.y,point##a.x,point##a.y,\
|
|
point##b.x,point##b.y) >= 0)\
|
|
{\
|
|
lPointSS = &point##a; rPointSS = &point##b;\
|
|
barycentric0 = &(p.barycentric[b]);\
|
|
barycentric1 = &(p.barycentric[a]);\
|
|
}\
|
|
else\
|
|
{\
|
|
lPointSS = &point##b; rPointSS = &point##a;\
|
|
barycentric0 = &(p.barycentric[a]);\
|
|
barycentric1 = &(p.barycentric[b]);\
|
|
}\
|
|
}
|
|
|
|
if (point0.y <= point1.y)
|
|
{
|
|
if (point0.y <= point2.y)
|
|
assignPoints(0,1,2)
|
|
else
|
|
assignPoints(2,0,1)
|
|
}
|
|
else
|
|
{
|
|
if (point1.y <= point2.y)
|
|
assignPoints(1,0,2)
|
|
else
|
|
assignPoints(2,0,1)
|
|
}
|
|
|
|
#undef assignPoints
|
|
|
|
#if S3L_FLAT
|
|
*barycentric0 = S3L_F / 3;
|
|
*barycentric1 = S3L_F / 3;
|
|
*barycentric2 = S3L_F - 2 * (S3L_F / 3);
|
|
#endif
|
|
|
|
p.triangleSize[0] = rPointSS->x - lPointSS->x;
|
|
p.triangleSize[1] =
|
|
(rPointSS->y > lPointSS->y ? rPointSS->y : lPointSS->y) - tPointSS->y;
|
|
|
|
// now draw the triangle line by line:
|
|
|
|
S3L_ScreenCoord splitY; // Y of the vertically middle point of the triangle
|
|
S3L_ScreenCoord endY; // bottom Y of the whole triangle
|
|
int splitOnLeft; /* whether splitY is the y coord. of left or right
|
|
point */
|
|
|
|
if (rPointSS->y <= lPointSS->y)
|
|
{
|
|
splitY = rPointSS->y;
|
|
splitOnLeft = 0;
|
|
endY = lPointSS->y;
|
|
}
|
|
else
|
|
{
|
|
splitY = lPointSS->y;
|
|
splitOnLeft = 1;
|
|
endY = rPointSS->y;
|
|
}
|
|
|
|
S3L_ScreenCoord currentY = tPointSS->y;
|
|
|
|
/* We'll be using an algorithm similar to Bresenham line algorithm. The
|
|
specifics of this algorithm are among others:
|
|
|
|
- drawing possibly NON-CONTINUOUS line
|
|
- NOT tracing the line exactly, but rather rasterizing one the right
|
|
side of it, according to the pixel CENTERS, INCLUDING the pixel
|
|
centers
|
|
|
|
The principle is this:
|
|
|
|
- Move vertically by pixels and accumulate the error (abs(dx/dy)).
|
|
- If the error is greater than one (crossed the next pixel center), keep
|
|
moving horizontally and substracting 1 from the error until it is less
|
|
than 1 again.
|
|
- To make this INTEGER ONLY, scale the case so that distance between
|
|
pixels is equal to dy (instead of 1). This way the error becomes
|
|
dx/dy * dy == dx, and we're comparing the error to (and potentially
|
|
substracting) 1 * dy == dy. */
|
|
|
|
int16_t
|
|
/* triangle side:
|
|
left right */
|
|
lX, rX, // current x position on the screen
|
|
lDx, rDx, // dx (end point - start point)
|
|
lDy, rDy, // dy (end point - start point)
|
|
lInc, rInc, // direction in which to increment (1 or -1)
|
|
lErr, rErr, // current error (Bresenham)
|
|
lErrCmp, rErrCmp, // helper for deciding comparison (> vs >=)
|
|
lErrAdd, rErrAdd, // error value to add in each Bresenham cycle
|
|
lErrSub, rErrSub; // error value to substract when moving in x direction
|
|
|
|
S3L_FastLerpState lSideFLS, rSideFLS;
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
S3L_FastLerpState lDepthFLS, rDepthFLS;
|
|
|
|
#define initDepthFLS(s,p1,p2)\
|
|
s##DepthFLS.valueScaled = p1##PointSS->z << S3L_FAST_LERP_QUALITY;\
|
|
s##DepthFLS.stepScaled = ((p2##PointSS->z << S3L_FAST_LERP_QUALITY) -\
|
|
s##DepthFLS.valueScaled) / (s##Dy != 0 ? s##Dy : 1);
|
|
#else
|
|
#define initDepthFLS(s,p1,p2) ;
|
|
#endif
|
|
|
|
/* init side for the algorithm, params:
|
|
s - which side (l or r)
|
|
p1 - point from (t, l or r)
|
|
p2 - point to (t, l or r)
|
|
down - whether the side coordinate goes top-down or vice versa */
|
|
#define initSide(s,p1,p2,down)\
|
|
s##X = p1##PointSS->x;\
|
|
s##Dx = p2##PointSS->x - p1##PointSS->x;\
|
|
s##Dy = p2##PointSS->y - p1##PointSS->y;\
|
|
initDepthFLS(s,p1,p2)\
|
|
s##SideFLS.stepScaled = (S3L_F << S3L_FAST_LERP_QUALITY)\
|
|
/ (s##Dy != 0 ? s##Dy : 1);\
|
|
s##SideFLS.valueScaled = 0;\
|
|
if (!down)\
|
|
{\
|
|
s##SideFLS.valueScaled =\
|
|
S3L_F << S3L_FAST_LERP_QUALITY;\
|
|
s##SideFLS.stepScaled *= -1;\
|
|
}\
|
|
s##Inc = s##Dx >= 0 ? 1 : -1;\
|
|
if (s##Dx < 0)\
|
|
{s##Err = 0; s##ErrCmp = 0;}\
|
|
else\
|
|
{s##Err = s##Dy; s##ErrCmp = 1;}\
|
|
s##ErrAdd = S3L_abs(s##Dx);\
|
|
s##ErrSub = s##Dy != 0 ? s##Dy : 1; /* don't allow 0, could lead to an
|
|
infinite substracting loop */
|
|
|
|
#define stepSide(s)\
|
|
while (s##Err - s##Dy >= s##ErrCmp)\
|
|
{\
|
|
s##X += s##Inc;\
|
|
s##Err -= s##ErrSub;\
|
|
}\
|
|
s##Err += s##ErrAdd;
|
|
|
|
initSide(r,t,r,1)
|
|
initSide(l,t,l,1)
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION
|
|
/* PC is done by linearly interpolating reciprocals from which the corrected
|
|
velues can be computed. See
|
|
http://www.lysator.liu.se/~mikaelk/doc/perspectivetexture/ */
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
#define Z_RECIP_NUMERATOR\
|
|
(S3L_F * S3L_F * S3L_F)
|
|
#elif S3L_PERSPECTIVE_CORRECTION == 2
|
|
#define Z_RECIP_NUMERATOR\
|
|
(S3L_F * S3L_F)
|
|
#endif
|
|
/* ^ This numerator is a number by which we divide values for the
|
|
reciprocals. For PC == 2 it has to be lower because linear interpolation
|
|
scaling would make it overflow -- this results in lower depth precision
|
|
in bigger distance for PC == 2. */
|
|
|
|
S3L_Unit
|
|
tPointRecipZ, lPointRecipZ, rPointRecipZ, /* Reciprocals of the depth of
|
|
each triangle point. */
|
|
lRecip0, lRecip1, rRecip0, rRecip1; /* Helper variables for swapping
|
|
the above after split. */
|
|
|
|
tPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(tPointSS->z);
|
|
lPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(lPointSS->z);
|
|
rPointRecipZ = Z_RECIP_NUMERATOR / S3L_nonZero(rPointSS->z);
|
|
|
|
lRecip0 = tPointRecipZ;
|
|
lRecip1 = lPointRecipZ;
|
|
rRecip0 = tPointRecipZ;
|
|
rRecip1 = rPointRecipZ;
|
|
|
|
#define manageSplitPerspective(b0,b1)\
|
|
b1##Recip0 = b0##PointRecipZ;\
|
|
b1##Recip1 = b1##PointRecipZ;\
|
|
b0##Recip0 = b0##PointRecipZ;\
|
|
b0##Recip1 = tPointRecipZ;
|
|
#else
|
|
#define manageSplitPerspective(b0,b1) ;
|
|
#endif
|
|
|
|
// clip to the screen in y dimension:
|
|
|
|
endY = S3L_min(endY,S3L_RESOLUTION_Y);
|
|
|
|
/* Clipping above the screen (y < 0) can't be easily done here, will be
|
|
handled inside the loop. */
|
|
|
|
while (currentY < endY) /* draw the triangle from top to bottom -- the
|
|
bottom-most row is left out because, following
|
|
from the rasterization rules (see start of the
|
|
file), it is to never be rasterized. */
|
|
{
|
|
if (currentY == splitY) // reached a vertical split of the triangle?
|
|
{
|
|
#define manageSplit(b0,b1,s0,s1)\
|
|
S3L_Unit *tmp = barycentric##b0;\
|
|
barycentric##b0 = barycentric##b1;\
|
|
barycentric##b1 = tmp;\
|
|
s0##SideFLS.valueScaled = (S3L_F\
|
|
<< S3L_FAST_LERP_QUALITY) - s0##SideFLS.valueScaled;\
|
|
s0##SideFLS.stepScaled *= -1;\
|
|
manageSplitPerspective(s0,s1)
|
|
|
|
if (splitOnLeft)
|
|
{
|
|
initSide(l,l,r,0);
|
|
manageSplit(0,2,r,l)
|
|
}
|
|
else
|
|
{
|
|
initSide(r,r,l,0);
|
|
manageSplit(1,2,l,r)
|
|
}
|
|
}
|
|
|
|
stepSide(r)
|
|
stepSide(l)
|
|
|
|
if (currentY >= 0) /* clipping of pixels whose y < 0 (can't be easily done
|
|
outside the loop because of the Bresenham-like
|
|
algorithm steps) */
|
|
{
|
|
p.y = currentY;
|
|
|
|
// draw the horizontal line
|
|
|
|
#if !S3L_FLAT
|
|
S3L_Unit rowLength = S3L_nonZero(rX - lX - 1); // prevent zero div
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION
|
|
S3L_Unit lOverZ, lRecipZ, rOverZ, rRecipZ, lT, rT;
|
|
|
|
lT = S3L_getFastLerpValue(lSideFLS);
|
|
rT = S3L_getFastLerpValue(rSideFLS);
|
|
|
|
lOverZ = S3L_interpolateByUnitFrom0(lRecip1,lT);
|
|
lRecipZ = S3L_interpolateByUnit(lRecip0,lRecip1,lT);
|
|
|
|
rOverZ = S3L_interpolateByUnitFrom0(rRecip1,rT);
|
|
rRecipZ = S3L_interpolateByUnit(rRecip0,rRecip1,rT);
|
|
#else
|
|
S3L_FastLerpState b0FLS, b1FLS;
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
S3L_FastLerpState depthFLS;
|
|
|
|
depthFLS.valueScaled = lDepthFLS.valueScaled;
|
|
depthFLS.stepScaled =
|
|
(rDepthFLS.valueScaled - lDepthFLS.valueScaled) / rowLength;
|
|
#endif
|
|
|
|
b0FLS.valueScaled = 0;
|
|
b1FLS.valueScaled = lSideFLS.valueScaled;
|
|
|
|
b0FLS.stepScaled = rSideFLS.valueScaled / rowLength;
|
|
b1FLS.stepScaled = -1 * lSideFLS.valueScaled / rowLength;
|
|
#endif
|
|
#endif
|
|
|
|
// clip to the screen in x dimension:
|
|
|
|
S3L_ScreenCoord rXClipped = S3L_min(rX,S3L_RESOLUTION_X),
|
|
lXClipped = lX;
|
|
|
|
if (lXClipped < 0)
|
|
{
|
|
lXClipped = 0;
|
|
|
|
#if !S3L_PERSPECTIVE_CORRECTION && !S3L_FLAT
|
|
b0FLS.valueScaled -= lX * b0FLS.stepScaled;
|
|
b1FLS.valueScaled -= lX * b1FLS.stepScaled;
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
depthFLS.valueScaled -= lX * depthFLS.stepScaled;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION
|
|
S3L_ScreenCoord i = lXClipped - lX; /* helper var to save one
|
|
substraction in the inner
|
|
loop */
|
|
#endif
|
|
|
|
#if S3L_PERSPECTIVE_CORRECTION == 2
|
|
S3L_FastLerpState
|
|
depthPC, // interpolates depth between row segments
|
|
b0PC, // interpolates barycentric0 between row segments
|
|
b1PC; // interpolates barycentric1 between row segments
|
|
|
|
/* ^ These interpolate values between row segments (lines of pixels
|
|
of S3L_PC_APPROX_LENGTH length). After each row segment perspective
|
|
correction is recomputed. */
|
|
|
|
depthPC.valueScaled =
|
|
(Z_RECIP_NUMERATOR /
|
|
S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,i,rowLength)))
|
|
<< S3L_FAST_LERP_QUALITY;
|
|
|
|
b0PC.valueScaled =
|
|
(
|
|
S3L_interpolateFrom0(rOverZ,i,rowLength)
|
|
* depthPC.valueScaled
|
|
) / (Z_RECIP_NUMERATOR / S3L_F);
|
|
|
|
b1PC.valueScaled =
|
|
(
|
|
(lOverZ - S3L_interpolateFrom0(lOverZ,i,rowLength))
|
|
* depthPC.valueScaled
|
|
) / (Z_RECIP_NUMERATOR / S3L_F);
|
|
|
|
int8_t rowCount = S3L_PC_APPROX_LENGTH;
|
|
#endif
|
|
|
|
#if S3L_Z_BUFFER
|
|
uint32_t zBufferIndex = p.y * S3L_RESOLUTION_X + lXClipped;
|
|
#endif
|
|
|
|
// draw the row -- inner loop:
|
|
for (S3L_ScreenCoord x = lXClipped; x < rXClipped; ++x)
|
|
{
|
|
int8_t testsPassed = 1;
|
|
|
|
#if S3L_STENCIL_BUFFER
|
|
if (!S3L_stencilTest(x,p.y))
|
|
testsPassed = 0;
|
|
#endif
|
|
p.x = x;
|
|
|
|
#if S3L_COMPUTE_DEPTH
|
|
#if S3L_PERSPECTIVE_CORRECTION == 1
|
|
p.depth = Z_RECIP_NUMERATOR /
|
|
S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,i,rowLength));
|
|
#elif S3L_PERSPECTIVE_CORRECTION == 2
|
|
if (rowCount >= S3L_PC_APPROX_LENGTH)
|
|
{
|
|
// init the linear interpolation to the next PC correct value
|
|
|
|
rowCount = 0;
|
|
|
|
S3L_Unit nextI = i + S3L_PC_APPROX_LENGTH;
|
|
|
|
if (nextI < rowLength)
|
|
{
|
|
S3L_Unit nextDepthScaled =
|
|
(
|
|
Z_RECIP_NUMERATOR /
|
|
S3L_nonZero(S3L_interpolate(lRecipZ,rRecipZ,nextI,rowLength))
|
|
) << S3L_FAST_LERP_QUALITY;
|
|
|
|
depthPC.stepScaled =
|
|
(nextDepthScaled - depthPC.valueScaled) / S3L_PC_APPROX_LENGTH;
|
|
|
|
S3L_Unit nextValue =
|
|
(
|
|
S3L_interpolateFrom0(rOverZ,nextI,rowLength)
|
|
* nextDepthScaled
|
|
) / (Z_RECIP_NUMERATOR / S3L_F);
|
|
|
|
b0PC.stepScaled =
|
|
(nextValue - b0PC.valueScaled) / S3L_PC_APPROX_LENGTH;
|
|
|
|
nextValue =
|
|
(
|
|
(lOverZ - S3L_interpolateFrom0(lOverZ,nextI,rowLength))
|
|
* nextDepthScaled
|
|
) / (Z_RECIP_NUMERATOR / S3L_F);
|
|
|
|
b1PC.stepScaled =
|
|
(nextValue - b1PC.valueScaled) / S3L_PC_APPROX_LENGTH;
|
|
}
|
|
else
|
|
{
|
|
/* A special case where we'd be interpolating outside the triangle.
|
|
It seems like a valid approach at first, but it creates a bug
|
|
in a case when the rasaterized triangle is near screen 0 and can
|
|
actually never reach the extrapolated screen position. So we
|
|
have to clamp to the actual end of the triangle here. */
|
|
|
|
S3L_Unit maxI = S3L_nonZero(rowLength - i);
|
|
|
|
S3L_Unit nextDepthScaled =
|
|
(
|
|
Z_RECIP_NUMERATOR /
|
|
S3L_nonZero(rRecipZ)
|
|
) << S3L_FAST_LERP_QUALITY;
|
|
|
|
depthPC.stepScaled =
|
|
(nextDepthScaled - depthPC.valueScaled) / maxI;
|
|
|
|
S3L_Unit nextValue =
|
|
(
|
|
rOverZ
|
|
* nextDepthScaled
|
|
) / (Z_RECIP_NUMERATOR / S3L_F);
|
|
|
|
b0PC.stepScaled =
|
|
(nextValue - b0PC.valueScaled) / maxI;
|
|
|
|
b1PC.stepScaled =
|
|
-1 * b1PC.valueScaled / maxI;
|
|
}
|
|
}
|
|
|
|
p.depth = S3L_getFastLerpValue(depthPC);
|
|
#else
|
|
p.depth = S3L_getFastLerpValue(depthFLS);
|
|
S3L_stepFastLerp(depthFLS);
|
|
#endif
|
|
#else // !S3L_COMPUTE_DEPTH
|
|
p.depth = (tPointSS->z + lPointSS->z + rPointSS->z) / 3;
|
|
#endif
|
|
|
|
#if S3L_Z_BUFFER
|
|
p.previousZ = S3L_zBuffer[zBufferIndex];
|
|
|
|
zBufferIndex++;
|
|
|
|
if (!S3L_zTest(p.x,p.y,p.depth))
|
|
testsPassed = 0;
|
|
#endif
|
|
|
|
if (testsPassed)
|
|
{
|
|
#if !S3L_FLAT
|
|
#if S3L_PERSPECTIVE_CORRECTION == 0
|
|
*barycentric0 = S3L_getFastLerpValue(b0FLS);
|
|
*barycentric1 = S3L_getFastLerpValue(b1FLS);
|
|
#elif S3L_PERSPECTIVE_CORRECTION == 1
|
|
*barycentric0 =
|
|
(
|
|
S3L_interpolateFrom0(rOverZ,i,rowLength)
|
|
* p.depth
|
|
) / (Z_RECIP_NUMERATOR / S3L_F);
|
|
|
|
*barycentric1 =
|
|
(
|
|
(lOverZ - S3L_interpolateFrom0(lOverZ,i,rowLength))
|
|
* p.depth
|
|
) / (Z_RECIP_NUMERATOR / S3L_F);
|
|
#elif S3L_PERSPECTIVE_CORRECTION == 2
|
|
*barycentric0 = S3L_getFastLerpValue(b0PC);
|
|
*barycentric1 = S3L_getFastLerpValue(b1PC);
|
|
#endif
|
|
|
|
*barycentric2 =
|
|
S3L_F - *barycentric0 - *barycentric1;
|
|
#endif
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
if (_S3L_projectedTriangleState != 0)
|
|
{
|
|
S3L_Unit newBarycentric[3];
|
|
|
|
newBarycentric[0] = S3L_interpolateBarycentric(
|
|
_S3L_triangleRemapBarycentrics[0].x,
|
|
_S3L_triangleRemapBarycentrics[1].x,
|
|
_S3L_triangleRemapBarycentrics[2].x,
|
|
p.barycentric);
|
|
|
|
newBarycentric[1] = S3L_interpolateBarycentric(
|
|
_S3L_triangleRemapBarycentrics[0].y,
|
|
_S3L_triangleRemapBarycentrics[1].y,
|
|
_S3L_triangleRemapBarycentrics[2].y,
|
|
p.barycentric);
|
|
|
|
newBarycentric[2] = S3L_interpolateBarycentric(
|
|
_S3L_triangleRemapBarycentrics[0].z,
|
|
_S3L_triangleRemapBarycentrics[1].z,
|
|
_S3L_triangleRemapBarycentrics[2].z,
|
|
p.barycentric);
|
|
|
|
p.barycentric[0] = newBarycentric[0];
|
|
p.barycentric[1] = newBarycentric[1];
|
|
p.barycentric[2] = newBarycentric[2];
|
|
}
|
|
#endif
|
|
S3L_PIXEL_FUNCTION(&p);
|
|
} // tests passed
|
|
|
|
#if !S3L_FLAT
|
|
#if S3L_PERSPECTIVE_CORRECTION
|
|
i++;
|
|
#if S3L_PERSPECTIVE_CORRECTION == 2
|
|
rowCount++;
|
|
|
|
S3L_stepFastLerp(depthPC);
|
|
S3L_stepFastLerp(b0PC);
|
|
S3L_stepFastLerp(b1PC);
|
|
#endif
|
|
#else
|
|
S3L_stepFastLerp(b0FLS);
|
|
S3L_stepFastLerp(b1FLS);
|
|
#endif
|
|
#endif
|
|
} // inner loop
|
|
} // y clipping
|
|
|
|
#if !S3L_FLAT
|
|
S3L_stepFastLerp(lSideFLS);
|
|
S3L_stepFastLerp(rSideFLS);
|
|
|
|
#if S3L_COMPUTE_LERP_DEPTH
|
|
S3L_stepFastLerp(lDepthFLS);
|
|
S3L_stepFastLerp(rDepthFLS);
|
|
#endif
|
|
#endif
|
|
|
|
++currentY;
|
|
} // row drawing
|
|
|
|
#undef manageSplit
|
|
#undef initPC
|
|
#undef initSide
|
|
#undef stepSide
|
|
#undef Z_RECIP_NUMERATOR
|
|
}
|
|
|
|
void S3L_rotate2DPoint(S3L_Unit *x, S3L_Unit *y, S3L_Unit angle)
|
|
{
|
|
if (angle < S3L_SIN_TABLE_UNIT_STEP)
|
|
return; // no visible rotation
|
|
|
|
S3L_Unit angleSin = S3L_sin(angle);
|
|
S3L_Unit angleCos = S3L_cos(angle);
|
|
|
|
S3L_Unit xBackup = *x;
|
|
|
|
*x =
|
|
(angleCos * (*x)) / S3L_F -
|
|
(angleSin * (*y)) / S3L_F;
|
|
|
|
*y =
|
|
(angleSin * xBackup) / S3L_F +
|
|
(angleCos * (*y)) / S3L_F;
|
|
}
|
|
|
|
void S3L_makeWorldMatrix(S3L_Transform3D worldTransform, S3L_Mat4 m)
|
|
{
|
|
S3L_makeScaleMatrix(
|
|
worldTransform.scale.x,
|
|
worldTransform.scale.y,
|
|
worldTransform.scale.z,
|
|
m);
|
|
|
|
S3L_Mat4 t;
|
|
|
|
S3L_makeRotationMatrixZXY(
|
|
worldTransform.rotation.x,
|
|
worldTransform.rotation.y,
|
|
worldTransform.rotation.z,
|
|
t);
|
|
|
|
S3L_mat4Xmat4(m,t);
|
|
|
|
S3L_makeTranslationMat(
|
|
worldTransform.translation.x,
|
|
worldTransform.translation.y,
|
|
worldTransform.translation.z,
|
|
t);
|
|
|
|
S3L_mat4Xmat4(m,t);
|
|
}
|
|
|
|
void S3L_mat4Transpose(S3L_Mat4 m)
|
|
{
|
|
S3L_Unit tmp;
|
|
|
|
for (uint8_t y = 0; y < 3; ++y)
|
|
for (uint8_t x = 1 + y; x < 4; ++x)
|
|
{
|
|
tmp = m[x][y];
|
|
m[x][y] = m[y][x];
|
|
m[y][x] = tmp;
|
|
}
|
|
}
|
|
|
|
void S3L_makeCameraMatrix(S3L_Transform3D cameraTransform, S3L_Mat4 m)
|
|
{
|
|
S3L_makeTranslationMat(
|
|
-1 * cameraTransform.translation.x,
|
|
-1 * cameraTransform.translation.y,
|
|
-1 * cameraTransform.translation.z,
|
|
m);
|
|
|
|
S3L_Mat4 r;
|
|
|
|
S3L_makeRotationMatrixZXY(
|
|
cameraTransform.rotation.x,
|
|
cameraTransform.rotation.y,
|
|
cameraTransform.rotation.z,
|
|
r);
|
|
|
|
S3L_mat4Transpose(r); // transposing creates an inverse transform
|
|
|
|
S3L_mat4Xmat4(m,r);
|
|
}
|
|
|
|
int8_t S3L_triangleWinding(
|
|
S3L_ScreenCoord x0,
|
|
S3L_ScreenCoord y0,
|
|
S3L_ScreenCoord x1,
|
|
S3L_ScreenCoord y1,
|
|
S3L_ScreenCoord x2,
|
|
S3L_ScreenCoord y2)
|
|
{
|
|
int32_t winding =
|
|
(y1 - y0) * (x2 - x1) - (x1 - x0) * (y2 - y1);
|
|
// ^ cross product for points with z == 0
|
|
|
|
return winding > 0 ? 1 : (winding < 0 ? -1 : 0);
|
|
}
|
|
|
|
/**
|
|
Checks if given triangle (in Screen Space) is at least partially visible,
|
|
i.e. returns false if the triangle is either completely outside the frustum
|
|
(left, right, top, bottom, near) or is invisible due to backface culling.
|
|
*/
|
|
static inline int8_t S3L_triangleIsVisible(
|
|
S3L_Vec4 p0,
|
|
S3L_Vec4 p1,
|
|
S3L_Vec4 p2,
|
|
uint8_t backfaceCulling)
|
|
{
|
|
#define clipTest(c,cmp,v)\
|
|
(p0.c cmp (v) && p1.c cmp (v) && p2.c cmp (v))
|
|
|
|
if ( // outside frustum?
|
|
#if S3L_NEAR_CROSS_STRATEGY == 0
|
|
p0.z <= S3L_NEAR || p1.z <= S3L_NEAR || p2.z <= S3L_NEAR ||
|
|
// ^ partially in front of NEAR?
|
|
#else
|
|
clipTest(z,<=,S3L_NEAR) || // completely in front of NEAR?
|
|
#endif
|
|
clipTest(x,<,0) ||
|
|
clipTest(x,>=,S3L_RESOLUTION_X) ||
|
|
clipTest(y,<,0) ||
|
|
clipTest(y,>,S3L_RESOLUTION_Y)
|
|
)
|
|
return 0;
|
|
|
|
#undef clipTest
|
|
|
|
if (backfaceCulling != 0)
|
|
{
|
|
int8_t winding =
|
|
S3L_triangleWinding(p0.x,p0.y,p1.x,p1.y,p2.x,p2.y);
|
|
|
|
if ((backfaceCulling == 1 && winding > 0) ||
|
|
(backfaceCulling == 2 && winding < 0))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#if S3L_SORT != 0
|
|
typedef struct
|
|
{
|
|
uint8_t modelIndex;
|
|
S3L_Index triangleIndex;
|
|
uint16_t sortValue;
|
|
} _S3L_TriangleToSort;
|
|
|
|
_S3L_TriangleToSort S3L_sortArray[S3L_MAX_TRIANGES_DRAWN];
|
|
uint16_t S3L_sortArrayLength;
|
|
#endif
|
|
|
|
void _S3L_projectVertex(
|
|
const S3L_Model3D *model,
|
|
S3L_Index triangleIndex,
|
|
uint8_t vertex,
|
|
S3L_Mat4 projectionMatrix,
|
|
S3L_Vec4 *result)
|
|
{
|
|
uint32_t vertexIndex = model->triangles[triangleIndex * 3 + vertex] * 3;
|
|
|
|
result->x = model->vertices[vertexIndex];
|
|
result->y = model->vertices[vertexIndex + 1];
|
|
result->z = model->vertices[vertexIndex + 2];
|
|
result->w = S3L_F; // needed for translation
|
|
|
|
S3L_vec3Xmat4(result,projectionMatrix);
|
|
|
|
result->w = result->z;
|
|
/* We'll keep the non-clamped z in w for sorting. */
|
|
}
|
|
|
|
void _S3L_mapProjectedVertexToScreen(S3L_Vec4 *vertex, S3L_Unit focalLength)
|
|
{
|
|
vertex->z = vertex->z >= S3L_NEAR ? vertex->z : S3L_NEAR;
|
|
/* ^ This firstly prevents zero division in the follwoing z-divide and
|
|
secondly "pushes" vertices that are in front of near a little bit forward,
|
|
which makes them behave a bit better. If all three vertices end up exactly
|
|
on NEAR, the triangle will be culled. */
|
|
|
|
S3L_perspectiveDivide(vertex,focalLength);
|
|
|
|
S3L_ScreenCoord sX, sY;
|
|
|
|
S3L_mapProjectionPlaneToScreen(*vertex,&sX,&sY);
|
|
|
|
vertex->x = sX;
|
|
vertex->y = sY;
|
|
}
|
|
|
|
/**
|
|
Projects a triangle to the screen. If enabled, a triangle can be potentially
|
|
subdivided into two if it crosses the near plane, in which case two projected
|
|
triangles are returned (the info about splitting or cutting the triangle is
|
|
passed in global variables, see above).
|
|
*/
|
|
void _S3L_projectTriangle(
|
|
const S3L_Model3D *model,
|
|
S3L_Index triangleIndex,
|
|
S3L_Mat4 matrix,
|
|
uint32_t focalLength,
|
|
S3L_Vec4 transformed[6])
|
|
{
|
|
_S3L_projectVertex(model,triangleIndex,0,matrix,&(transformed[0]));
|
|
_S3L_projectVertex(model,triangleIndex,1,matrix,&(transformed[1]));
|
|
_S3L_projectVertex(model,triangleIndex,2,matrix,&(transformed[2]));
|
|
|
|
_S3L_projectedTriangleState = 0;
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 2 || S3L_NEAR_CROSS_STRATEGY == 3
|
|
uint8_t infront = 0;
|
|
uint8_t behind = 0;
|
|
uint8_t infrontI[3];
|
|
uint8_t behindI[3];
|
|
|
|
for (uint8_t i = 0; i < 3; ++i)
|
|
if (transformed[i].z < S3L_NEAR)
|
|
{
|
|
infrontI[infront] = i;
|
|
infront++;
|
|
}
|
|
else
|
|
{
|
|
behindI[behind] = i;
|
|
behind++;
|
|
}
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
for (int i = 0; i < 3; ++i)
|
|
S3L_vec4Init(&(_S3L_triangleRemapBarycentrics[i]));
|
|
|
|
_S3L_triangleRemapBarycentrics[0].x = S3L_F;
|
|
_S3L_triangleRemapBarycentrics[1].y = S3L_F;
|
|
_S3L_triangleRemapBarycentrics[2].z = S3L_F;
|
|
#endif
|
|
|
|
#define interpolateVertex \
|
|
S3L_Unit ratio =\
|
|
((transformed[be].z - S3L_NEAR) * S3L_F) /\
|
|
(transformed[be].z - transformed[in].z);\
|
|
transformed[in].x = transformed[be].x - \
|
|
((transformed[be].x - transformed[in].x) * ratio) /\
|
|
S3L_F;\
|
|
transformed[in].y = transformed[be].y -\
|
|
((transformed[be].y - transformed[in].y) * ratio) /\
|
|
S3L_F;\
|
|
transformed[in].z = S3L_NEAR;\
|
|
if (beI != 0) {\
|
|
beI->x = (beI->x * ratio) / S3L_F;\
|
|
beI->y = (beI->y * ratio) / S3L_F;\
|
|
beI->z = (beI->z * ratio) / S3L_F;\
|
|
ratio = S3L_F - ratio;\
|
|
beI->x += (beB->x * ratio) / S3L_F;\
|
|
beI->y += (beB->y * ratio) / S3L_F;\
|
|
beI->z += (beB->z * ratio) / S3L_F; }
|
|
|
|
if (infront == 2)
|
|
{
|
|
// shift the two vertices forward along the edge
|
|
for (uint8_t i = 0; i < 2; ++i)
|
|
{
|
|
uint8_t be = behindI[0], in = infrontI[i];
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
S3L_Vec4 *beI = &(_S3L_triangleRemapBarycentrics[in]),
|
|
*beB = &(_S3L_triangleRemapBarycentrics[be]);
|
|
#else
|
|
S3L_Vec4 *beI = 0, *beB = 0;
|
|
#endif
|
|
|
|
interpolateVertex
|
|
|
|
_S3L_projectedTriangleState = 1;
|
|
}
|
|
}
|
|
else if (infront == 1)
|
|
{
|
|
// create another triangle and do the shifts
|
|
transformed[3] = transformed[behindI[1]];
|
|
transformed[4] = transformed[infrontI[0]];
|
|
transformed[5] = transformed[infrontI[0]];
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
_S3L_triangleRemapBarycentrics[3] =
|
|
_S3L_triangleRemapBarycentrics[behindI[1]];
|
|
_S3L_triangleRemapBarycentrics[4] =
|
|
_S3L_triangleRemapBarycentrics[infrontI[0]];
|
|
_S3L_triangleRemapBarycentrics[5] =
|
|
_S3L_triangleRemapBarycentrics[infrontI[0]];
|
|
#endif
|
|
|
|
for (uint8_t i = 0; i < 2; ++i)
|
|
{
|
|
uint8_t be = behindI[i], in = i + 4;
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
S3L_Vec4 *beI = &(_S3L_triangleRemapBarycentrics[in]),
|
|
*beB = &(_S3L_triangleRemapBarycentrics[be]);
|
|
#else
|
|
S3L_Vec4 *beI = 0, *beB = 0;
|
|
#endif
|
|
|
|
interpolateVertex
|
|
}
|
|
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
_S3L_triangleRemapBarycentrics[infrontI[0]] =
|
|
_S3L_triangleRemapBarycentrics[4];
|
|
#endif
|
|
|
|
transformed[infrontI[0]] = transformed[4];
|
|
|
|
_S3L_mapProjectedVertexToScreen(&transformed[3],focalLength);
|
|
_S3L_mapProjectedVertexToScreen(&transformed[4],focalLength);
|
|
_S3L_mapProjectedVertexToScreen(&transformed[5],focalLength);
|
|
|
|
_S3L_projectedTriangleState = 2;
|
|
}
|
|
|
|
#undef interpolateVertex
|
|
#endif // S3L_NEAR_CROSS_STRATEGY == 2
|
|
|
|
_S3L_mapProjectedVertexToScreen(&transformed[0],focalLength);
|
|
_S3L_mapProjectedVertexToScreen(&transformed[1],focalLength);
|
|
_S3L_mapProjectedVertexToScreen(&transformed[2],focalLength);
|
|
}
|
|
|
|
void S3L_drawScene(S3L_Scene scene)
|
|
{
|
|
S3L_Mat4 matFinal, matCamera;
|
|
S3L_Vec4 transformed[6]; // transformed triangle coords, for 2 triangles
|
|
|
|
const S3L_Model3D *model;
|
|
S3L_Index modelIndex, triangleIndex;
|
|
|
|
S3L_makeCameraMatrix(scene.camera.transform,matCamera);
|
|
|
|
#if S3L_SORT != 0
|
|
uint16_t previousModel = 0;
|
|
S3L_sortArrayLength = 0;
|
|
#endif
|
|
|
|
for (modelIndex = 0; modelIndex < scene.modelCount; ++modelIndex)
|
|
{
|
|
if (!scene.models[modelIndex].config.visible)
|
|
continue;
|
|
|
|
#if S3L_SORT != 0
|
|
if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
|
|
break;
|
|
|
|
previousModel = modelIndex;
|
|
#endif
|
|
|
|
if (scene.models[modelIndex].customTransformMatrix == 0)
|
|
S3L_makeWorldMatrix(scene.models[modelIndex].transform,matFinal);
|
|
else
|
|
{
|
|
S3L_Mat4 *m = scene.models[modelIndex].customTransformMatrix;
|
|
|
|
for (int8_t j = 0; j < 4; ++j)
|
|
for (int8_t i = 0; i < 4; ++i)
|
|
matFinal[i][j] = (*m)[i][j];
|
|
}
|
|
|
|
S3L_mat4Xmat4(matFinal,matCamera);
|
|
|
|
S3L_Index triangleCount = scene.models[modelIndex].triangleCount;
|
|
|
|
triangleIndex = 0;
|
|
|
|
model = &(scene.models[modelIndex]);
|
|
|
|
while (triangleIndex < triangleCount)
|
|
{
|
|
/* Some kind of cache could be used in theory to not project perviously
|
|
already projected vertices, but after some testing this was abandoned,
|
|
no gain was seen. */
|
|
|
|
_S3L_projectTriangle(model,triangleIndex,matFinal,
|
|
scene.camera.focalLength,transformed);
|
|
|
|
if (S3L_triangleIsVisible(transformed[0],transformed[1],transformed[2],
|
|
model->config.backfaceCulling))
|
|
{
|
|
#if S3L_SORT == 0
|
|
// without sorting draw right away
|
|
S3L_drawTriangle(transformed[0],transformed[1],transformed[2],modelIndex,
|
|
triangleIndex);
|
|
|
|
if (_S3L_projectedTriangleState == 2) // draw potential subtriangle
|
|
{
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
_S3L_triangleRemapBarycentrics[0] = _S3L_triangleRemapBarycentrics[3];
|
|
_S3L_triangleRemapBarycentrics[1] = _S3L_triangleRemapBarycentrics[4];
|
|
_S3L_triangleRemapBarycentrics[2] = _S3L_triangleRemapBarycentrics[5];
|
|
#endif
|
|
|
|
S3L_drawTriangle(transformed[3],transformed[4],transformed[5],
|
|
modelIndex, triangleIndex);
|
|
}
|
|
#else
|
|
|
|
if (S3L_sortArrayLength >= S3L_MAX_TRIANGES_DRAWN)
|
|
break;
|
|
|
|
// with sorting add to a sort list
|
|
S3L_sortArray[S3L_sortArrayLength].modelIndex = modelIndex;
|
|
S3L_sortArray[S3L_sortArrayLength].triangleIndex = triangleIndex;
|
|
S3L_sortArray[S3L_sortArrayLength].sortValue = S3L_zeroClamp(
|
|
transformed[0].w + transformed[1].w + transformed[2].w) >> 2;
|
|
/* ^
|
|
The w component here stores non-clamped z.
|
|
|
|
As a simple approximation we sort by the triangle center point,
|
|
which is a mean coordinate -- we don't actually have to divide by 3
|
|
(or anything), that is unnecessary for sorting! We shift by 2 just
|
|
as a fast operation to prevent overflow of the sum over uint_16t. */
|
|
|
|
S3L_sortArrayLength++;
|
|
#endif
|
|
}
|
|
|
|
triangleIndex++;
|
|
}
|
|
}
|
|
|
|
#if S3L_SORT != 0
|
|
|
|
#if S3L_SORT == 1
|
|
#define cmp <
|
|
#else
|
|
#define cmp >
|
|
#endif
|
|
|
|
/* Sort the triangles. We use insertion sort, because it has many advantages,
|
|
especially for smaller arrays (better than bubble sort, in-place, stable,
|
|
simple, ...). */
|
|
|
|
for (int16_t i = 1; i < S3L_sortArrayLength; ++i)
|
|
{
|
|
_S3L_TriangleToSort tmp = S3L_sortArray[i];
|
|
|
|
int16_t j = i - 1;
|
|
|
|
while (j >= 0 && S3L_sortArray[j].sortValue cmp tmp.sortValue)
|
|
{
|
|
S3L_sortArray[j + 1] = S3L_sortArray[j];
|
|
j--;
|
|
}
|
|
|
|
S3L_sortArray[j + 1] = tmp;
|
|
}
|
|
|
|
#undef cmp
|
|
|
|
for (S3L_Index i = 0; i < S3L_sortArrayLength; ++i) // draw sorted triangles
|
|
{
|
|
modelIndex = S3L_sortArray[i].modelIndex;
|
|
triangleIndex = S3L_sortArray[i].triangleIndex;
|
|
|
|
model = &(scene.models[modelIndex]);
|
|
|
|
if (modelIndex != previousModel)
|
|
{
|
|
// only recompute the matrix when the model has changed
|
|
S3L_makeWorldMatrix(model->transform,matFinal);
|
|
S3L_mat4Xmat4(matFinal,matCamera);
|
|
previousModel = modelIndex;
|
|
}
|
|
|
|
/* Here we project the points again, which is redundant and slow as they've
|
|
already been projected above, but saving the projected points would
|
|
require a lot of memory, which for small resolutions could be even
|
|
worse than z-bufer. So this seems to be the best way memory-wise. */
|
|
|
|
_S3L_projectTriangle(model,triangleIndex,matFinal,scene.camera.focalLength,
|
|
transformed);
|
|
|
|
S3L_drawTriangle(transformed[0],transformed[1],transformed[2],modelIndex,
|
|
triangleIndex);
|
|
|
|
if (_S3L_projectedTriangleState == 2)
|
|
{
|
|
#if S3L_NEAR_CROSS_STRATEGY == 3
|
|
_S3L_triangleRemapBarycentrics[0] = _S3L_triangleRemapBarycentrics[3];
|
|
_S3L_triangleRemapBarycentrics[1] = _S3L_triangleRemapBarycentrics[4];
|
|
_S3L_triangleRemapBarycentrics[2] = _S3L_triangleRemapBarycentrics[5];
|
|
#endif
|
|
|
|
S3L_drawTriangle(transformed[3],transformed[4],transformed[5],
|
|
modelIndex, triangleIndex);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // guard
|